Lightweight Online Semisupervised Learning for Ultrasonic Radar-Based Dynamic Hand Gesture Recognition

计算机科学 手势 人工智能 分类器(UML) 笔记本电脑 机器学习 稳健性(进化) 手势识别 推论 支持向量机 测距 Boosting(机器学习) 模式识别(心理学) 电信 基因 操作系统 生物化学 化学
作者
Pixi Kang,Xiangyu Li
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (3): 2707-2717 被引量:2
标识
DOI:10.1109/jsen.2022.3229764
摘要

Ultrasonic dynamic hand gesture recognition (U-DHGR) is a promising approach of human–computer interaction (HCI) for a broad range of emerging applications. Cross-user robustness is a key challenge for its classification algorithms. Due to the highly personalized gesture characteristics and the limited number of training samples, traditional offline supervised learning algorithms usually fail to achieve as high accuracy on new users as on the training participants. In this article, we propose a lightweight online semisupervised learning algorithm for U-DHGR that aims to manipulate the incrementally collected unlabeled user samples to further improve the personalized recognition performance and reduce the data preparation cost. For each of the defined gesture classes, a tree-ensemble-based binary classifier is deployed, whose partial structures are offline trained to predict pseudo-labels for the incremental training of the remaining structures. Experiments show that by combining the predictions of both the offline and incrementally trained parts of the classifier, improvements ranging from 3.8% to 7.9% are achieved in the recognition accuracies for different users. The average accuracy of the eight defined gestures reaches 96.7%, which is 3.1% higher than its nearest offline supervised competitor. The model size of the classifier is only 0.5 MiB after finishing the incremental training. The average inference time and incremental sample process time on a laptop are 11.7 and 37.9 ms, respectively, which shows the potential to be integrated into resource-constrained platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hollow完成签到 ,获得积分10
1秒前
所所应助小枣采纳,获得10
1秒前
EBA发布了新的文献求助10
1秒前
2秒前
36完成签到 ,获得积分10
4秒前
仪表唐唐完成签到,获得积分10
4秒前
嘉嘉子发布了新的文献求助10
4秒前
橙子完成签到 ,获得积分10
4秒前
5秒前
Liu发布了新的文献求助30
6秒前
6秒前
7秒前
benben发布了新的文献求助30
9秒前
10秒前
Ning发布了新的文献求助10
10秒前
隐形曼青应助寒天采纳,获得10
10秒前
Hello应助张凡钰采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
12秒前
Wan完成签到,获得积分10
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得20
12秒前
SYLH应助科研通管家采纳,获得10
12秒前
spy应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
华仔应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
Allenlee应助科研通管家采纳,获得50
13秒前
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
mslln发布了新的文献求助10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979788
求助须知:如何正确求助?哪些是违规求助? 3523806
关于积分的说明 11218898
捐赠科研通 3261339
什么是DOI,文献DOI怎么找? 1800544
邀请新用户注册赠送积分活动 879177
科研通“疑难数据库(出版商)”最低求助积分说明 807182