Toward Semantic Communications: Deep Learning-Based Image Semantic Coding

计算机科学 语义压缩 语义相似性 人工智能 语义计算 自然语言处理 编码器 模式识别(心理学) 语义技术 语义网 操作系统
作者
Danlan Huang,Feifei Gao,Xiaoming Tao,Qiyuan Du,Jianhua Lü
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:41 (1): 55-71 被引量:106
标识
DOI:10.1109/jsac.2022.3221999
摘要

Semantic communications has received growing interest since it can remarkably reduce the amount of data to be transmitted without missing critical information. Most existing works explore the semantic encoding and transmission for text and apply techniques in Natural Language Processing (NLP) to interpret the meaning of the text. In this paper, we conceive the semantic communications for image data that is much more richer in semantics and bandwidth sensitive. We propose an reinforcement learning based adaptive semantic coding (RL-ASC) approach that encodes images beyond pixel level. Firstly, we define the semantic concept of image data that includes the category, spatial arrangement, and visual feature as the representation unit, and propose a convolutional semantic encoder to extract semantic concepts. Secondly, we propose the image reconstruction criterion that evolves from the traditional pixel similarity to semantic similarity and perceptual performance. Thirdly, we design a novel RL-based semantic bit allocation model, whose reward is the increase in rate-semantic-perceptual performance after encoding a certain semantic concept with adaptive quantization level. Thus, the task-related information is preserved and reconstructed properly while less important data is discarded. Finally, we propose the Generative Adversarial Nets (GANs) based semantic decoder that fuses both locally and globally features via an attention module. Experimental results demonstrate that the proposed RL-ASC is noise robust and could reconstruct visually pleasant and semantic consistent image in low bit rate condition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗄巧发布了新的文献求助10
1秒前
1秒前
研友_Z33zkZ发布了新的文献求助10
1秒前
小蘑菇应助111采纳,获得10
2秒前
陈雷完成签到,获得积分10
2秒前
CipherSage应助12采纳,获得10
4秒前
4秒前
abcd发布了新的文献求助10
4秒前
董宏杨关注了科研通微信公众号
5秒前
6秒前
瘦瘦白昼发布了新的文献求助10
6秒前
MoodMeed完成签到,获得积分10
6秒前
TL完成签到,获得积分10
7秒前
7秒前
7秒前
无私的芹应助龚正龙采纳,获得10
8秒前
花样发布了新的文献求助10
8秒前
田様应助研友_Z33zkZ采纳,获得50
8秒前
8秒前
甜晞完成签到,获得积分10
8秒前
科研通AI2S应助xiaohe采纳,获得10
9秒前
10秒前
追逐123完成签到 ,获得积分10
12秒前
12秒前
哒哒张发布了新的文献求助30
12秒前
DC发布了新的文献求助10
14秒前
打打应助fangliu采纳,获得10
14秒前
holl完成签到,获得积分10
15秒前
15秒前
15秒前
15秒前
翟如风完成签到,获得积分10
15秒前
15秒前
黑木完成签到 ,获得积分10
15秒前
星辰大海应助奥暖将采纳,获得10
15秒前
大个应助infun采纳,获得10
17秒前
小巧的忘幽完成签到,获得积分20
17秒前
Whaoe发布了新的文献求助10
18秒前
18秒前
隐形曼青应助玩命的糖豆采纳,获得10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952150
求助须知:如何正确求助?哪些是违规求助? 3497551
关于积分的说明 11088037
捐赠科研通 3228178
什么是DOI,文献DOI怎么找? 1784700
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801230