Toward Semantic Communications: Deep Learning-Based Image Semantic Coding

计算机科学 语义压缩 语义相似性 人工智能 语义计算 自然语言处理 编码器 模式识别(心理学) 语义技术 语义网 操作系统
作者
Danlan Huang,Feifei Gao,Xiaoming Tao,Qiyuan Du,Jianhua Lü
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:41 (1): 55-71 被引量:106
标识
DOI:10.1109/jsac.2022.3221999
摘要

Semantic communications has received growing interest since it can remarkably reduce the amount of data to be transmitted without missing critical information. Most existing works explore the semantic encoding and transmission for text and apply techniques in Natural Language Processing (NLP) to interpret the meaning of the text. In this paper, we conceive the semantic communications for image data that is much more richer in semantics and bandwidth sensitive. We propose an reinforcement learning based adaptive semantic coding (RL-ASC) approach that encodes images beyond pixel level. Firstly, we define the semantic concept of image data that includes the category, spatial arrangement, and visual feature as the representation unit, and propose a convolutional semantic encoder to extract semantic concepts. Secondly, we propose the image reconstruction criterion that evolves from the traditional pixel similarity to semantic similarity and perceptual performance. Thirdly, we design a novel RL-based semantic bit allocation model, whose reward is the increase in rate-semantic-perceptual performance after encoding a certain semantic concept with adaptive quantization level. Thus, the task-related information is preserved and reconstructed properly while less important data is discarded. Finally, we propose the Generative Adversarial Nets (GANs) based semantic decoder that fuses both locally and globally features via an attention module. Experimental results demonstrate that the proposed RL-ASC is noise robust and could reconstruct visually pleasant and semantic consistent image in low bit rate condition.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助XS_QI采纳,获得10
2秒前
钟赜发布了新的文献求助10
4秒前
爱洗澡的拖鞋完成签到 ,获得积分0
4秒前
www发布了新的文献求助10
7秒前
10秒前
10秒前
染小诺完成签到,获得积分10
11秒前
xixihaha完成签到,获得积分10
12秒前
xiekunwhy完成签到,获得积分10
16秒前
19秒前
小柚子发布了新的文献求助10
22秒前
22秒前
24秒前
panyuqiangstudy完成签到,获得积分20
25秒前
善学以致用应助坚定岂愈采纳,获得30
25秒前
577发布了新的文献求助10
27秒前
NexusExplorer应助风中莫英采纳,获得10
27秒前
萌面大侠完成签到,获得积分10
27秒前
pistachio发布了新的文献求助10
30秒前
科研通AI6.2应助www采纳,获得100
31秒前
31秒前
科研通AI6.2应助577采纳,获得10
34秒前
eeven完成签到 ,获得积分10
36秒前
852应助斑ban采纳,获得10
36秒前
40秒前
Ddz完成签到,获得积分10
40秒前
清泉完成签到,获得积分10
41秒前
49秒前
XS_QI发布了新的文献求助10
52秒前
从从余余完成签到 ,获得积分10
54秒前
55秒前
anjin完成签到 ,获得积分10
56秒前
斑ban发布了新的文献求助10
56秒前
56秒前
56秒前
56秒前
56秒前
56秒前
56秒前
56秒前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5847481
求助须知:如何正确求助?哪些是违规求助? 6226602
关于积分的说明 15620255
捐赠科研通 4964154
什么是DOI,文献DOI怎么找? 2676451
邀请新用户注册赠送积分活动 1621016
关于科研通互助平台的介绍 1576953