Toward Semantic Communications: Deep Learning-Based Image Semantic Coding

计算机科学 语义压缩 语义相似性 人工智能 语义计算 自然语言处理 编码器 模式识别(心理学) 语义技术 语义网 操作系统
作者
Danlan Huang,Feifei Gao,Xiaoming Tao,Qiyuan Du,Jianhua Lü
出处
期刊:IEEE Journal on Selected Areas in Communications [Institute of Electrical and Electronics Engineers]
卷期号:41 (1): 55-71 被引量:106
标识
DOI:10.1109/jsac.2022.3221999
摘要

Semantic communications has received growing interest since it can remarkably reduce the amount of data to be transmitted without missing critical information. Most existing works explore the semantic encoding and transmission for text and apply techniques in Natural Language Processing (NLP) to interpret the meaning of the text. In this paper, we conceive the semantic communications for image data that is much more richer in semantics and bandwidth sensitive. We propose an reinforcement learning based adaptive semantic coding (RL-ASC) approach that encodes images beyond pixel level. Firstly, we define the semantic concept of image data that includes the category, spatial arrangement, and visual feature as the representation unit, and propose a convolutional semantic encoder to extract semantic concepts. Secondly, we propose the image reconstruction criterion that evolves from the traditional pixel similarity to semantic similarity and perceptual performance. Thirdly, we design a novel RL-based semantic bit allocation model, whose reward is the increase in rate-semantic-perceptual performance after encoding a certain semantic concept with adaptive quantization level. Thus, the task-related information is preserved and reconstructed properly while less important data is discarded. Finally, we propose the Generative Adversarial Nets (GANs) based semantic decoder that fuses both locally and globally features via an attention module. Experimental results demonstrate that the proposed RL-ASC is noise robust and could reconstruct visually pleasant and semantic consistent image in low bit rate condition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
布丁宝完成签到,获得积分10
1秒前
2秒前
丘比特应助小泡芙采纳,获得10
2秒前
4秒前
白华苍松发布了新的文献求助10
4秒前
七安完成签到,获得积分10
5秒前
飞云发布了新的文献求助10
6秒前
橙子青发布了新的文献求助10
6秒前
杜儒完成签到,获得积分10
6秒前
优美紫槐应助当下最好采纳,获得10
6秒前
6秒前
Mei完成签到,获得积分10
6秒前
111发布了新的文献求助10
7秒前
嘿嘿应助oi采纳,获得10
7秒前
斯文败类应助111采纳,获得10
8秒前
阳光的鹏煊完成签到 ,获得积分10
8秒前
炎星语完成签到,获得积分10
8秒前
愉快的念梦完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
11秒前
杜儒发布了新的文献求助50
11秒前
李王菲完成签到,获得积分10
11秒前
细腻的三问完成签到,获得积分10
11秒前
追鱼者也完成签到,获得积分10
11秒前
liyingbo发布了新的文献求助10
12秒前
12秒前
14秒前
14秒前
14秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
哈哈完成签到 ,获得积分10
16秒前
simon发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684580
求助须知:如何正确求助?哪些是违规求助? 5037579
关于积分的说明 15184614
捐赠科研通 4843828
什么是DOI,文献DOI怎么找? 2596943
邀请新用户注册赠送积分活动 1549548
关于科研通互助平台的介绍 1508057