Semi-supervised segmentation of coronary DSA using mixed networks and multi-strategies

计算机科学 分割 人工智能 卷积神经网络 模式识别(心理学) 概率逻辑 像素 深度学习 聚类分析 机器学习
作者
Pu Yao,Qinghua Zhang,Cheng Qian,Quan Zeng,Na Li,Lijuan Zhang,Shoujun Zhou,Gang Zhao
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:156: 106493-106493 被引量:6
标识
DOI:10.1016/j.compbiomed.2022.106493
摘要

The coronary arteries supply blood to the myocardium, which originate from the root of the aorta and mainly branch into the left and right. X-ray digital subtraction angiography (DSA) is a technique for evaluating coronary artery plaques and narrowing, that is widely used because of its time efficiency and cost-effectiveness. However, automated coronary vessel classification and segmentation remains challenging using a little data. Therefore, the purpose of this study is twofold: one is to propose a more robust method for vessel segmentation, the other is to provide a solution that is feasible with a small amount of labeled data. Currently, there are three main types of vessel segmentation methods, i.e., graphical- and statistical-based; clustering theory based, and deep learning-based methods for pixel-by-pixel probabilistic prediction, among which the last method is the mainstream with high accuracy and automation. Under this trend, an Inception-SwinUnet (ISUnet) network combining the convolutional neural network and Transformer basic module was proposed in this paper. Considering that data-driven fully supervised learning (FSL) segmentation methods require a large set of paired data with high-quality pixel-level annotation, which is expertise-demanding and time-consuming, we proposed a Semi-supervised Learning (SSL) method to achieve better performance with a small amount of labeled and unlabeled data. Different from the classical SSL method, i.e., Mean-Teacher, our method used two different networks for cross-teaching as the backbone. Meanwhile, inspired by deep supervision and confidence learning (CL), two effective strategies for SSL were adopted, which were denominated Pyramid-consistency Learning (PL) and Confidence Learning (CL), respectively. Both were designed to filter the noise and improve the credibility of pseudo labels generated by unlabeled data. Compared with existing methods, ours achieved superior segmentation performance over other FSL and SSL ones by using data with a small equal number of labels. Code is available in https://github.com/Allenem/SSL4DSA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shi发布了新的文献求助10
刚刚
自觉樱桃应助fifteen采纳,获得10
刚刚
1秒前
上官若男应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
wanci应助dannnnn采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
3秒前
美满忆文应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得20
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
li应助科研通管家采纳,获得20
3秒前
打打应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
4秒前
情怀应助YJY采纳,获得10
4秒前
123123完成签到 ,获得积分10
4秒前
安静一曲发布了新的文献求助10
7秒前
xcxc发布了新的文献求助10
7秒前
9秒前
zhang完成签到,获得积分10
10秒前
10秒前
小米完成签到,获得积分10
10秒前
12秒前
13秒前
zhang发布了新的文献求助30
13秒前
16秒前
willow完成签到 ,获得积分10
17秒前
哈哈完成签到 ,获得积分10
18秒前
领导范儿应助tan90采纳,获得10
19秒前
恩佐完成签到,获得积分10
19秒前
lennon完成签到,获得积分10
21秒前
大雄完成签到,获得积分10
21秒前
风偏偏完成签到,获得积分10
24秒前
tan90完成签到,获得积分10
25秒前
努力发文章完成签到,获得积分20
26秒前
27秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160924
求助须知:如何正确求助?哪些是违规求助? 2812163
关于积分的说明 7894580
捐赠科研通 2471015
什么是DOI,文献DOI怎么找? 1315853
科研通“疑难数据库(出版商)”最低求助积分说明 631036
版权声明 602068