已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Transformer-Based Domain-Specific Representation for Unsupervised Domain Adaptive Vehicle Re-Identification

计算机科学 判别式 特征学习 人工智能 编码器 聚类分析 领域(数学分析) 变压器 自编码 模式识别(心理学) 水准点(测量) 特征向量 成对比较 机器学习 深度学习 工程类 操作系统 电压 地理 数学分析 电气工程 大地测量学 数学
作者
Ran Wei,Jianyang Gu,Shuting He,Wei Jiang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (3): 2935-2946 被引量:25
标识
DOI:10.1109/tits.2022.3225025
摘要

Fully-supervised vehicle re-identification (re-ID) methods are faced with performance degradation when applied to new image domains. Therefore, developing unsupervised domain adaptation (UDA) to transfer the knowledge from learned source domain to new unlabeled target domain becomes an indispensable task. It is challenging because different domains have various image appearances, such as different backgrounds, illuminations and resolutions, especially when cameras have different viewpoints. To tackle this domain gap issue, a novel Transformer-based Domain-Specific Representation learning network (TDSR) is proposed to dynamically focus on corresponding detailed hints for each domain. Specifically, with the source and target domain being trained simultaneously, a domain encoding module is proposed to introduce domain information into the network. The original features of source and target domains are enriched with these domain encodings first, and then sequentially processed by a Transformer encoder to model contextual information and a decoder to summarize the encoded features into the final domain-specific feature representations. Moreover, we propose a Contrastive Clustering Loss (CCL) to directly optimize the distribution of features at cluster level. Instances are overall pulled closer to the prototype of the same identity, and pushed farther from the prototypes of different identities. It helps compact the clusters in the latent space and improve the discriminative capability of the network, leading to more accurate pseudo-label assignment in TDSR. Our method outperforms the state-of-the-art UDA methods on vehicle re-ID benchmark datasets VeRi and VehicleID on both real-world to real-world and synthetic to real-world settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
燕尔蓝发布了新的文献求助10
刚刚
刚刚
渔渔完成签到 ,获得积分10
1秒前
2秒前
嘛吉发布了新的文献求助10
4秒前
活泼的若血完成签到 ,获得积分10
6秒前
学术小白w完成签到,获得积分10
7秒前
tangtang关注了科研通微信公众号
7秒前
8秒前
科研通AI6应助凶狠的源智采纳,获得10
9秒前
11秒前
传奇3应助hygge采纳,获得10
13秒前
13秒前
14秒前
14秒前
caoyonggang发布了新的文献求助10
15秒前
馆长给开心的访卉的求助进行了留言
15秒前
puppy发布了新的文献求助10
17秒前
科研通AI6应助嘛吉采纳,获得10
19秒前
19秒前
科研通AI6应助优雅的帅哥采纳,获得10
19秒前
小小牛马完成签到 ,获得积分10
21秒前
21秒前
22秒前
陈小白完成签到,获得积分10
22秒前
23秒前
ltttaaaa发布了新的文献求助10
23秒前
陆旻发布了新的文献求助10
24秒前
小小鹅发布了新的文献求助10
24秒前
tangtang发布了新的文献求助10
24秒前
幸运的姜姜完成签到 ,获得积分10
24秒前
科研民工李完成签到,获得积分10
27秒前
29秒前
30秒前
小小牛马关注了科研通微信公众号
30秒前
32秒前
32秒前
执着无声完成签到 ,获得积分10
36秒前
36秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5126032
求助须知:如何正确求助?哪些是违规求助? 4329689
关于积分的说明 13491683
捐赠科研通 4164660
什么是DOI,文献DOI怎么找? 2283026
邀请新用户注册赠送积分活动 1284135
关于科研通互助平台的介绍 1223522