Transformer-Based Domain-Specific Representation for Unsupervised Domain Adaptive Vehicle Re-Identification

计算机科学 判别式 特征学习 人工智能 编码器 聚类分析 领域(数学分析) 变压器 自编码 模式识别(心理学) 水准点(测量) 特征向量 成对比较 机器学习 深度学习 工程类 操作系统 电压 地理 数学分析 电气工程 大地测量学 数学
作者
Ran Wei,Jianyang Gu,Shuting He,Wei Jiang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (3): 2935-2946 被引量:25
标识
DOI:10.1109/tits.2022.3225025
摘要

Fully-supervised vehicle re-identification (re-ID) methods are faced with performance degradation when applied to new image domains. Therefore, developing unsupervised domain adaptation (UDA) to transfer the knowledge from learned source domain to new unlabeled target domain becomes an indispensable task. It is challenging because different domains have various image appearances, such as different backgrounds, illuminations and resolutions, especially when cameras have different viewpoints. To tackle this domain gap issue, a novel Transformer-based Domain-Specific Representation learning network (TDSR) is proposed to dynamically focus on corresponding detailed hints for each domain. Specifically, with the source and target domain being trained simultaneously, a domain encoding module is proposed to introduce domain information into the network. The original features of source and target domains are enriched with these domain encodings first, and then sequentially processed by a Transformer encoder to model contextual information and a decoder to summarize the encoded features into the final domain-specific feature representations. Moreover, we propose a Contrastive Clustering Loss (CCL) to directly optimize the distribution of features at cluster level. Instances are overall pulled closer to the prototype of the same identity, and pushed farther from the prototypes of different identities. It helps compact the clusters in the latent space and improve the discriminative capability of the network, leading to more accurate pseudo-label assignment in TDSR. Our method outperforms the state-of-the-art UDA methods on vehicle re-ID benchmark datasets VeRi and VehicleID on both real-world to real-world and synthetic to real-world settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
fighting发布了新的文献求助10
刚刚
听话的富发布了新的文献求助10
2秒前
吴某人发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
Suyx发布了新的文献求助10
4秒前
6秒前
李健应助glacial采纳,获得10
7秒前
CipherSage应助xxz采纳,获得10
7秒前
8秒前
英姑应助葛广奔采纳,获得10
8秒前
成就半双发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
10秒前
平淡小凝完成签到,获得积分10
10秒前
10秒前
无花果应助王铭智采纳,获得10
10秒前
zwy完成签到,获得积分10
11秒前
今天吃啥发布了新的文献求助30
11秒前
在水一方应助yao采纳,获得10
11秒前
浮游应助哈尼采纳,获得10
11秒前
Satan完成签到,获得积分10
11秒前
zhuyuxin发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
乐观无心发布了新的文献求助10
14秒前
韩立发布了新的文献求助10
15秒前
虞丹萱发布了新的文献求助10
15秒前
十月完成签到 ,获得积分10
15秒前
NANA完成签到,获得积分20
15秒前
张长江发布了新的文献求助10
15秒前
曲淳发布了新的文献求助10
16秒前
慕青应助听话的富采纳,获得10
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287058
求助须知:如何正确求助?哪些是违规求助? 4439572
关于积分的说明 13822123
捐赠科研通 4321561
什么是DOI,文献DOI怎么找? 2372031
邀请新用户注册赠送积分活动 1367525
关于科研通互助平台的介绍 1331007