Transformer-Based Domain-Specific Representation for Unsupervised Domain Adaptive Vehicle Re-Identification

计算机科学 判别式 特征学习 人工智能 编码器 聚类分析 领域(数学分析) 变压器 自编码 模式识别(心理学) 水准点(测量) 特征向量 成对比较 机器学习 深度学习 工程类 数学分析 数学 大地测量学 电压 地理 电气工程 操作系统
作者
Ran Wei,Jianyang Gu,Shuting He,Wei Jiang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (3): 2935-2946 被引量:25
标识
DOI:10.1109/tits.2022.3225025
摘要

Fully-supervised vehicle re-identification (re-ID) methods are faced with performance degradation when applied to new image domains. Therefore, developing unsupervised domain adaptation (UDA) to transfer the knowledge from learned source domain to new unlabeled target domain becomes an indispensable task. It is challenging because different domains have various image appearances, such as different backgrounds, illuminations and resolutions, especially when cameras have different viewpoints. To tackle this domain gap issue, a novel Transformer-based Domain-Specific Representation learning network (TDSR) is proposed to dynamically focus on corresponding detailed hints for each domain. Specifically, with the source and target domain being trained simultaneously, a domain encoding module is proposed to introduce domain information into the network. The original features of source and target domains are enriched with these domain encodings first, and then sequentially processed by a Transformer encoder to model contextual information and a decoder to summarize the encoded features into the final domain-specific feature representations. Moreover, we propose a Contrastive Clustering Loss (CCL) to directly optimize the distribution of features at cluster level. Instances are overall pulled closer to the prototype of the same identity, and pushed farther from the prototypes of different identities. It helps compact the clusters in the latent space and improve the discriminative capability of the network, leading to more accurate pseudo-label assignment in TDSR. Our method outperforms the state-of-the-art UDA methods on vehicle re-ID benchmark datasets VeRi and VehicleID on both real-world to real-world and synthetic to real-world settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小趴菜发布了新的文献求助10
刚刚
不安青牛应助iii采纳,获得10
1秒前
1秒前
桃博发布了新的文献求助20
1秒前
于于发布了新的文献求助10
1秒前
1秒前
xie发布了新的文献求助10
2秒前
2秒前
2秒前
火星上冥茗完成签到,获得积分10
3秒前
3秒前
SciGPT应助内向茉莉采纳,获得10
3秒前
可爱的函函应助鉴定为寄采纳,获得10
3秒前
卤蛋完成签到,获得积分10
4秒前
泡沫发布了新的文献求助10
4秒前
Y_Bin完成签到,获得积分20
5秒前
5秒前
5秒前
希金斯发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
Demi完成签到,获得积分10
8秒前
8秒前
8秒前
lxr8900完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
张亚慧完成签到 ,获得积分10
10秒前
可爱的函函应助Cynthia采纳,获得10
11秒前
嘉博学长发布了新的文献求助10
11秒前
iNk应助坚强的笑天采纳,获得10
11秒前
12秒前
小马甲应助泡沫采纳,获得10
12秒前
健忘芹发布了新的文献求助10
12秒前
科研通AI2S应助wxd采纳,获得10
12秒前
gwq发布了新的文献求助10
13秒前
Joy发布了新的文献求助10
13秒前
36456657应助顺心白开水采纳,获得10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3468830
求助须知:如何正确求助?哪些是违规求助? 3061848
关于积分的说明 9077239
捐赠科研通 2752315
什么是DOI,文献DOI怎么找? 1510388
科研通“疑难数据库(出版商)”最低求助积分说明 697771
邀请新用户注册赠送积分活动 697751