Transformer-Based Domain-Specific Representation for Unsupervised Domain Adaptive Vehicle Re-Identification

计算机科学 判别式 特征学习 人工智能 编码器 聚类分析 领域(数学分析) 变压器 自编码 模式识别(心理学) 水准点(测量) 特征向量 成对比较 机器学习 深度学习 工程类 数学分析 数学 大地测量学 电压 地理 电气工程 操作系统
作者
Ran Wei,Jianyang Gu,Shuting He,Wei Jiang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (3): 2935-2946 被引量:25
标识
DOI:10.1109/tits.2022.3225025
摘要

Fully-supervised vehicle re-identification (re-ID) methods are faced with performance degradation when applied to new image domains. Therefore, developing unsupervised domain adaptation (UDA) to transfer the knowledge from learned source domain to new unlabeled target domain becomes an indispensable task. It is challenging because different domains have various image appearances, such as different backgrounds, illuminations and resolutions, especially when cameras have different viewpoints. To tackle this domain gap issue, a novel Transformer-based Domain-Specific Representation learning network (TDSR) is proposed to dynamically focus on corresponding detailed hints for each domain. Specifically, with the source and target domain being trained simultaneously, a domain encoding module is proposed to introduce domain information into the network. The original features of source and target domains are enriched with these domain encodings first, and then sequentially processed by a Transformer encoder to model contextual information and a decoder to summarize the encoded features into the final domain-specific feature representations. Moreover, we propose a Contrastive Clustering Loss (CCL) to directly optimize the distribution of features at cluster level. Instances are overall pulled closer to the prototype of the same identity, and pushed farther from the prototypes of different identities. It helps compact the clusters in the latent space and improve the discriminative capability of the network, leading to more accurate pseudo-label assignment in TDSR. Our method outperforms the state-of-the-art UDA methods on vehicle re-ID benchmark datasets VeRi and VehicleID on both real-world to real-world and synthetic to real-world settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
shine发布了新的文献求助20
2秒前
April发布了新的文献求助10
3秒前
努力学习发布了新的文献求助10
3秒前
3秒前
一只龟龟发布了新的文献求助10
4秒前
4秒前
Sun发布了新的文献求助10
5秒前
handong完成签到,获得积分10
5秒前
太叔丹翠完成签到 ,获得积分10
5秒前
欧博发布了新的文献求助10
6秒前
湫枫完成签到,获得积分10
7秒前
绿藻发布了新的文献求助10
8秒前
cc发布了新的文献求助10
9秒前
我是老大应助Zurich采纳,获得10
9秒前
Dongjie完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
小眼儿完成签到,获得积分10
11秒前
11秒前
SYLH应助RosyBai采纳,获得10
11秒前
handong发布了新的文献求助10
12秒前
13秒前
大宝发布了新的文献求助20
14秒前
Okayoooooo发布了新的文献求助10
17秒前
18秒前
英姑应助欢欢欢乐乐乐乐采纳,获得10
19秒前
19秒前
XuP发布了新的文献求助10
19秒前
19秒前
lllttt发布了新的文献求助10
19秒前
汉堡包应助runfen采纳,获得10
20秒前
华仔应助dd采纳,获得10
20秒前
21秒前
21秒前
22秒前
于思枫完成签到,获得积分10
22秒前
aaaaaa发布了新的文献求助10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966742
求助须知:如何正确求助?哪些是违规求助? 3512237
关于积分的说明 11162366
捐赠科研通 3247107
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804432