Personalized immune subtypes based on machine learning predict response to checkpoint blockade in gastric cancer

免疫检查点 下调和上调 免疫系统 癌症研究 阿替唑单抗 癌症 彭布罗利珠单抗 肿瘤微环境 医学 免疫疗法 生物 免疫学 内科学 基因 生物化学
作者
Weibin Huang,Yuhui Zhang,Songyao Chen,Haofan Yin,Guangyao Liu,Huaqi Zhang,Jiannan Xu,Ji-Shang Yu,Yujian Xia,Yulong He,Changhua Zhang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:1
标识
DOI:10.1093/bib/bbac554
摘要

Abstract Immune checkpoint inhibitors (ICI) show high efficiency in a small fraction of advanced gastric cancer (GC). However, personalized immune subtypes have not been developed for the prediction of ICI efficiency in GC. Herein, we identified Pan-Immune Activation Module (PIAM), a curated gene expression profile (GEP) representing the co-infiltration of multiple immune cell types in tumor microenvironment of GC, which was associated with high expression of immunosuppressive molecules such as PD-1 and CTLA-4. We also identified Pan-Immune Dysfunction Genes (PIDG), a conservative PIAM-derivated GEP indicating the dysfunction of immune cell cooperation, which was associated with upregulation of metastatic programs (extracellular matrix receptor interaction, TGF-β signaling, epithelial-mesenchymal transition and calcium signaling) but downregulation of proliferative signalings (MYC targets, E2F targets, mTORC1 signaling, and DNA replication and repair). Moreover, we developed ‘GSClassifier’, an ensemble toolkit based on top scoring pairs and extreme gradient boosting, for population-based modeling and personalized identification of GEP subtypes. With PIAM and PIDG, we developed four Pan-immune Activation and Dysfunction (PAD) subtypes and a GSClassifier model ‘PAD for individual’ with high accuracy in predicting response to pembrolizumab (anti-PD-1) in advance GC (AUC = 0.833). Intriguingly, PAD-II (PIAMhighPIDGlow) displayed the highest objective response rate (60.0%) compared with other subtypes (PAD-I, PIAMhighPIDGhigh, 0%; PAD-III, PIAMlowPIDGhigh, 0%; PAD-IV, PIAMlowPIDGlow, 17.6%; P = 0.003), which was further validated in the metastatic urothelial cancer cohort treated with atezolizumab (anti-PD-L1) (P = 0.018). In all, we provided ‘GSClassifier’ as a refined computational framework for GEP-based stratification and PAD subtypes as a promising strategy for exploring ICI responders in GC. Metastatic pathways could be potential targets for GC patients with high immune infiltration but resistance to ICI therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诸葛雪兰发布了新的文献求助10
刚刚
1秒前
CC完成签到,获得积分10
1秒前
wanci应助gaos采纳,获得10
1秒前
顾矜应助四火采纳,获得10
1秒前
人福药业发布了新的文献求助30
1秒前
liuguohua126发布了新的文献求助10
2秒前
分子遗传小菜鸟完成签到,获得积分10
2秒前
洛尚发布了新的文献求助10
2秒前
英俊的铭应助咳咳采纳,获得10
3秒前
科研通AI2S应助嗯呢采纳,获得10
3秒前
姆姆发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
11发布了新的文献求助10
6秒前
大个应助limof采纳,获得10
6秒前
7秒前
竹筏过海应助chen采纳,获得50
8秒前
8秒前
schoolboy发布了新的文献求助10
8秒前
完美世界应助洛尚采纳,获得10
8秒前
苹果萧发布了新的文献求助10
9秒前
钟是一梦发布了新的文献求助10
10秒前
Lucas应助Light采纳,获得10
11秒前
11秒前
11秒前
李健的粉丝团团长应助Ll采纳,获得10
11秒前
11秒前
JQKing完成签到,获得积分10
12秒前
12秒前
zs完成签到 ,获得积分10
12秒前
12秒前
11完成签到,获得积分20
12秒前
一定会更好的完成签到,获得积分10
13秒前
Pangsj发布了新的文献求助10
13秒前
姆姆完成签到,获得积分10
13秒前
领导范儿应助落晨采纳,获得10
13秒前
14秒前
善良的安卉完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740