Personalized immune subtypes based on machine learning predict response to checkpoint blockade in gastric cancer

免疫检查点 下调和上调 免疫系统 癌症研究 阿替唑单抗 癌症 彭布罗利珠单抗 肿瘤微环境 医学 免疫疗法 生物 免疫学 内科学 基因 生物化学
作者
Weibin Huang,Yuhui Zhang,Songyao Chen,Haofan Yin,Guangyao Liu,Huaqi Zhang,Jiannan Xu,Ji-Shang Yu,Yujian Xia,Yulong He,Changhua Zhang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:1
标识
DOI:10.1093/bib/bbac554
摘要

Abstract Immune checkpoint inhibitors (ICI) show high efficiency in a small fraction of advanced gastric cancer (GC). However, personalized immune subtypes have not been developed for the prediction of ICI efficiency in GC. Herein, we identified Pan-Immune Activation Module (PIAM), a curated gene expression profile (GEP) representing the co-infiltration of multiple immune cell types in tumor microenvironment of GC, which was associated with high expression of immunosuppressive molecules such as PD-1 and CTLA-4. We also identified Pan-Immune Dysfunction Genes (PIDG), a conservative PIAM-derivated GEP indicating the dysfunction of immune cell cooperation, which was associated with upregulation of metastatic programs (extracellular matrix receptor interaction, TGF-β signaling, epithelial-mesenchymal transition and calcium signaling) but downregulation of proliferative signalings (MYC targets, E2F targets, mTORC1 signaling, and DNA replication and repair). Moreover, we developed ‘GSClassifier’, an ensemble toolkit based on top scoring pairs and extreme gradient boosting, for population-based modeling and personalized identification of GEP subtypes. With PIAM and PIDG, we developed four Pan-immune Activation and Dysfunction (PAD) subtypes and a GSClassifier model ‘PAD for individual’ with high accuracy in predicting response to pembrolizumab (anti-PD-1) in advance GC (AUC = 0.833). Intriguingly, PAD-II (PIAMhighPIDGlow) displayed the highest objective response rate (60.0%) compared with other subtypes (PAD-I, PIAMhighPIDGhigh, 0%; PAD-III, PIAMlowPIDGhigh, 0%; PAD-IV, PIAMlowPIDGlow, 17.6%; P = 0.003), which was further validated in the metastatic urothelial cancer cohort treated with atezolizumab (anti-PD-L1) (P = 0.018). In all, we provided ‘GSClassifier’ as a refined computational framework for GEP-based stratification and PAD subtypes as a promising strategy for exploring ICI responders in GC. Metastatic pathways could be potential targets for GC patients with high immune infiltration but resistance to ICI therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
xubee完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
2秒前
3秒前
完美世界应助PAUL采纳,获得10
3秒前
ChenK发布了新的文献求助10
3秒前
老王发布了新的文献求助10
4秒前
张爽发布了新的文献求助30
5秒前
Ws完成签到,获得积分10
5秒前
小璐璐呀发布了新的文献求助10
5秒前
左右完成签到,获得积分10
6秒前
6秒前
ticsadis完成签到,获得积分10
6秒前
6秒前
远方完成签到,获得积分10
6秒前
神明发布了新的文献求助10
6秒前
7秒前
7秒前
西门博超发布了新的文献求助10
7秒前
吴海娇完成签到,获得积分10
8秒前
迷人小张完成签到,获得积分20
8秒前
yan发布了新的文献求助10
8秒前
科研通AI5应助JV采纳,获得10
8秒前
等待帆布鞋完成签到 ,获得积分10
9秒前
果果发布了新的文献求助30
9秒前
9秒前
葡小小发布了新的文献求助10
10秒前
ding应助pincoudegushi采纳,获得10
10秒前
刘成完成签到,获得积分10
10秒前
11秒前
11秒前
马吉克完成签到 ,获得积分10
11秒前
复成发布了新的文献求助10
11秒前
zzww发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4905167
求助须知:如何正确求助?哪些是违规求助? 4183256
关于积分的说明 12989553
捐赠科研通 3949290
什么是DOI,文献DOI怎么找? 2165918
邀请新用户注册赠送积分活动 1184444
关于科研通互助平台的介绍 1090705