Built-Up Area Extraction From GF-3 Image based on an Improved Transformer Model

计算机科学 人工智能 特征提取 分割 图像分割 模式识别(心理学) 卷积神经网络 计算机视觉
作者
Tianyang Li,Chao Wang,Fan Wu,Hong Zhang,Bo Zhang,Lu Xu
标识
DOI:10.1109/igarss46834.2022.9884924
摘要

With the development of urbanisation in China, the urban areas are expanding rapidly, but there is a huge regional disparity between the east, central and western regions. The urban development in the western region lags far behind that in the eastern and central regions. In the western region of China, due to the large number of mountains and SAR backscatter mechanism, there are a lot of overlays in the image, resulting in high false alarms in built-up areas segmentation. In order to solve the problem, this paper proposed a new built-up area extraction model based on the Transformer. Different from the segmentation method based on convolutional neural network, the self-attention mechanism of the Transformer was introduced to effectively capture the image context information and reduce the impact of mountain overlays on the extraction of built-up areas. The multi-layer Transformer encoder and the multilayer perceptron (MLP) decoder were used to fuse feature maps of different scales for the sake of enhancing the ability to extract architectural features. With the purpose of improving the generalization ability, various data augmentation methods were used during training, such as random noise, random blur, and random distortion. In this paper, about 32000 samples, including some mountainous areas and around China, were used for training, which are from 27 scenes of GF-3 10m SAR images covering different areas in China. The method proposed in this paper reached a mIoU of 0.8130 and a Kappa coefficient of 0.9423, which significantly reduced false alarms in mountainous areas. Taking the study area of Lanzhou City, Gansu Province of China as an example, the result is basically consistent with the classification map of World Cover. It shows that the proposed method has a good ability to extract the distribution information of built-up areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
酷酷的小张完成签到,获得积分10
刚刚
1秒前
尊敬的小刺猬完成签到,获得积分10
1秒前
1秒前
jessica发布了新的文献求助10
2秒前
情怀应助memedaaaah采纳,获得10
2秒前
KCC完成签到,获得积分20
2秒前
2秒前
沉静丹寒发布了新的文献求助30
3秒前
852应助肥肥采纳,获得10
3秒前
马瑞发布了新的文献求助10
3秒前
年轻的吐司完成签到,获得积分10
4秒前
你晖哥发布了新的文献求助10
4秒前
可爱的函函应助123采纳,获得10
4秒前
4秒前
4秒前
DijiaXu应助uu采纳,获得10
4秒前
5秒前
6秒前
6秒前
123发布了新的文献求助10
6秒前
冬去春来发布了新的文献求助10
7秒前
归尘发布了新的文献求助10
7秒前
Tong123发布了新的文献求助10
8秒前
李健发布了新的文献求助10
8秒前
JamesPei应助小芭乐采纳,获得10
8秒前
8秒前
9秒前
9秒前
9秒前
猪猪hero应助王珺采纳,获得10
10秒前
彭于晏应助小学生采纳,获得10
10秒前
慕容松发布了新的文献求助10
10秒前
科目三应助自由大叔采纳,获得10
10秒前
10秒前
一颗有理想的蛋完成签到 ,获得积分10
10秒前
10秒前
ZoeZhang发布了新的文献求助10
10秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974943
求助须知:如何正确求助?哪些是违规求助? 3519467
关于积分的说明 11198482
捐赠科研通 3255728
什么是DOI,文献DOI怎么找? 1797904
邀请新用户注册赠送积分活动 877261
科研通“疑难数据库(出版商)”最低求助积分说明 806224