清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Built-Up Area Extraction From GF-3 Image based on an Improved Transformer Model

计算机科学 人工智能 特征提取 分割 图像分割 模式识别(心理学) 卷积神经网络 计算机视觉
作者
Tianyang Li,Chao Wang,Fan Wu,Hong Zhang,Bo Zhang,Lu Xu
标识
DOI:10.1109/igarss46834.2022.9884924
摘要

With the development of urbanisation in China, the urban areas are expanding rapidly, but there is a huge regional disparity between the east, central and western regions. The urban development in the western region lags far behind that in the eastern and central regions. In the western region of China, due to the large number of mountains and SAR backscatter mechanism, there are a lot of overlays in the image, resulting in high false alarms in built-up areas segmentation. In order to solve the problem, this paper proposed a new built-up area extraction model based on the Transformer. Different from the segmentation method based on convolutional neural network, the self-attention mechanism of the Transformer was introduced to effectively capture the image context information and reduce the impact of mountain overlays on the extraction of built-up areas. The multi-layer Transformer encoder and the multilayer perceptron (MLP) decoder were used to fuse feature maps of different scales for the sake of enhancing the ability to extract architectural features. With the purpose of improving the generalization ability, various data augmentation methods were used during training, such as random noise, random blur, and random distortion. In this paper, about 32000 samples, including some mountainous areas and around China, were used for training, which are from 27 scenes of GF-3 10m SAR images covering different areas in China. The method proposed in this paper reached a mIoU of 0.8130 and a Kappa coefficient of 0.9423, which significantly reduced false alarms in mountainous areas. Taking the study area of Lanzhou City, Gansu Province of China as an example, the result is basically consistent with the classification map of World Cover. It shows that the proposed method has a good ability to extract the distribution information of built-up areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
25秒前
Alisha完成签到,获得积分10
25秒前
双子土豆泥完成签到 ,获得积分10
28秒前
任伟超完成签到,获得积分10
36秒前
ramsey33完成签到 ,获得积分10
36秒前
twrw发布了新的文献求助10
38秒前
淡然一德完成签到,获得积分10
1分钟前
清秀灵薇完成签到,获得积分10
1分钟前
mathmotive完成签到,获得积分20
1分钟前
丁老三完成签到 ,获得积分10
1分钟前
fei完成签到 ,获得积分10
1分钟前
三个气的大门完成签到 ,获得积分10
1分钟前
幽默滑板完成签到,获得积分10
1分钟前
郭俊秀完成签到 ,获得积分10
1分钟前
胡可完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
梵莫发布了新的文献求助10
2分钟前
Wen完成签到 ,获得积分10
2分钟前
云下完成签到 ,获得积分10
2分钟前
aaiirrii完成签到,获得积分10
2分钟前
浚稚完成签到 ,获得积分10
3分钟前
Sandy应助土豆··采纳,获得20
3分钟前
WittingGU完成签到,获得积分0
3分钟前
仁和完成签到 ,获得积分10
3分钟前
3分钟前
噼里啪啦完成签到 ,获得积分10
3分钟前
小龙仔123完成签到 ,获得积分20
3分钟前
大水完成签到 ,获得积分10
3分钟前
雪山飞龙发布了新的文献求助10
3分钟前
通科研完成签到 ,获得积分10
4分钟前
aq22完成签到 ,获得积分10
4分钟前
xdd完成签到 ,获得积分10
4分钟前
风华完成签到,获得积分10
4分钟前
4分钟前
herpes完成签到 ,获得积分10
4分钟前
GGBond完成签到 ,获得积分10
4分钟前
livinglast完成签到 ,获得积分10
5分钟前
5分钟前
Rondab应助雪山飞龙采纳,获得10
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968521
求助须知:如何正确求助?哪些是违规求助? 3513341
关于积分的说明 11167298
捐赠科研通 3248700
什么是DOI,文献DOI怎么找? 1794434
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804664