亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Built-Up Area Extraction From GF-3 Image based on an Improved Transformer Model

计算机科学 人工智能 特征提取 分割 图像分割 模式识别(心理学) 卷积神经网络 计算机视觉
作者
Tianyang Li,Chao Wang,Fan Wu,Hong Zhang,Bo Zhang,Lu Xu
标识
DOI:10.1109/igarss46834.2022.9884924
摘要

With the development of urbanisation in China, the urban areas are expanding rapidly, but there is a huge regional disparity between the east, central and western regions. The urban development in the western region lags far behind that in the eastern and central regions. In the western region of China, due to the large number of mountains and SAR backscatter mechanism, there are a lot of overlays in the image, resulting in high false alarms in built-up areas segmentation. In order to solve the problem, this paper proposed a new built-up area extraction model based on the Transformer. Different from the segmentation method based on convolutional neural network, the self-attention mechanism of the Transformer was introduced to effectively capture the image context information and reduce the impact of mountain overlays on the extraction of built-up areas. The multi-layer Transformer encoder and the multilayer perceptron (MLP) decoder were used to fuse feature maps of different scales for the sake of enhancing the ability to extract architectural features. With the purpose of improving the generalization ability, various data augmentation methods were used during training, such as random noise, random blur, and random distortion. In this paper, about 32000 samples, including some mountainous areas and around China, were used for training, which are from 27 scenes of GF-3 10m SAR images covering different areas in China. The method proposed in this paper reached a mIoU of 0.8130 and a Kappa coefficient of 0.9423, which significantly reduced false alarms in mountainous areas. Taking the study area of Lanzhou City, Gansu Province of China as an example, the result is basically consistent with the classification map of World Cover. It shows that the proposed method has a good ability to extract the distribution information of built-up areas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xlxu发布了新的文献求助10
1秒前
张萌发布了新的文献求助10
2秒前
6秒前
vida完成签到 ,获得积分10
7秒前
仰勒完成签到 ,获得积分10
10秒前
山川日月完成签到,获得积分10
10秒前
懒骨头兄发布了新的文献求助10
11秒前
猫猫祟完成签到 ,获得积分10
16秒前
点点点完成签到 ,获得积分10
22秒前
拼搏向上完成签到,获得积分10
22秒前
inyh59完成签到,获得积分10
23秒前
26秒前
刻苦的溪流完成签到,获得积分10
28秒前
28秒前
sofia发布了新的文献求助10
29秒前
大壮发布了新的文献求助10
31秒前
科目三应助inyh59采纳,获得10
32秒前
shimly0101xx发布了新的文献求助10
33秒前
xyy完成签到,获得积分20
35秒前
Hello应助samsijyu采纳,获得10
36秒前
Lulu完成签到 ,获得积分10
41秒前
summer完成签到 ,获得积分10
41秒前
43秒前
情怀应助cc采纳,获得10
45秒前
透彻含义发布了新的文献求助10
46秒前
科研通AI6应助无限猫咪采纳,获得10
50秒前
大个应助科研通管家采纳,获得10
52秒前
上官若男应助科研通管家采纳,获得10
52秒前
科研通AI2S应助科研通管家采纳,获得10
52秒前
Jasper应助科研通管家采纳,获得10
52秒前
大个应助科研通管家采纳,获得10
52秒前
顾矜应助科研通管家采纳,获得10
52秒前
情怀应助科研通管家采纳,获得10
53秒前
sss完成签到 ,获得积分10
59秒前
笔记本应助null采纳,获得150
1分钟前
1分钟前
1分钟前
cc发布了新的文献求助10
1分钟前
予安发布了新的文献求助10
1分钟前
无花果应助3sigma采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616992
求助须知:如何正确求助?哪些是违规求助? 4701328
关于积分的说明 14913361
捐赠科研通 4747615
什么是DOI,文献DOI怎么找? 2549174
邀请新用户注册赠送积分活动 1512299
关于科研通互助平台的介绍 1474049