Built-Up Area Extraction From GF-3 Image based on an Improved Transformer Model

计算机科学 人工智能 特征提取 分割 图像分割 模式识别(心理学) 卷积神经网络 计算机视觉
作者
Tianyang Li,Chao Wang,Fan Wu,Hong Zhang,Bo Zhang,Lu Xu
标识
DOI:10.1109/igarss46834.2022.9884924
摘要

With the development of urbanisation in China, the urban areas are expanding rapidly, but there is a huge regional disparity between the east, central and western regions. The urban development in the western region lags far behind that in the eastern and central regions. In the western region of China, due to the large number of mountains and SAR backscatter mechanism, there are a lot of overlays in the image, resulting in high false alarms in built-up areas segmentation. In order to solve the problem, this paper proposed a new built-up area extraction model based on the Transformer. Different from the segmentation method based on convolutional neural network, the self-attention mechanism of the Transformer was introduced to effectively capture the image context information and reduce the impact of mountain overlays on the extraction of built-up areas. The multi-layer Transformer encoder and the multilayer perceptron (MLP) decoder were used to fuse feature maps of different scales for the sake of enhancing the ability to extract architectural features. With the purpose of improving the generalization ability, various data augmentation methods were used during training, such as random noise, random blur, and random distortion. In this paper, about 32000 samples, including some mountainous areas and around China, were used for training, which are from 27 scenes of GF-3 10m SAR images covering different areas in China. The method proposed in this paper reached a mIoU of 0.8130 and a Kappa coefficient of 0.9423, which significantly reduced false alarms in mountainous areas. Taking the study area of Lanzhou City, Gansu Province of China as an example, the result is basically consistent with the classification map of World Cover. It shows that the proposed method has a good ability to extract the distribution information of built-up areas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
漂亮的万声完成签到,获得积分10
4秒前
Jennifer应助燕子采纳,获得10
6秒前
6秒前
听白完成签到 ,获得积分10
10秒前
李志全完成签到 ,获得积分10
10秒前
柔弱云朵完成签到 ,获得积分10
10秒前
婷婷完成签到,获得积分10
12秒前
欢喜雅蕊发布了新的文献求助10
13秒前
一一应助kuzzi采纳,获得20
15秒前
打打应助谦让的振家采纳,获得10
17秒前
18秒前
欢喜雅蕊完成签到,获得积分10
20秒前
hellokk发布了新的文献求助10
22秒前
怡然聪展完成签到 ,获得积分10
23秒前
23秒前
LZ完成签到,获得积分10
24秒前
皮雨南发布了新的文献求助10
26秒前
领导范儿应助科研通管家采纳,获得10
27秒前
abxxl应助科研通管家采纳,获得10
27秒前
27秒前
DIDIDI完成签到 ,获得积分10
28秒前
28秒前
丘比特应助小段采纳,获得10
29秒前
30秒前
mljever完成签到,获得积分10
31秒前
张泽崇发布了新的文献求助10
34秒前
香蕉觅云应助人文采纳,获得10
35秒前
35秒前
hhhblabla应助Jim采纳,获得10
36秒前
36秒前
37秒前
李牛牛完成签到,获得积分10
39秒前
43秒前
48秒前
48秒前
mhl11应助cheers采纳,获得10
50秒前
津嘉完成签到 ,获得积分10
52秒前
53秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Wanddickenabhängiges Bruchzähigkeitsverhalten und Schädigungsentwicklung in einer Großgusskomponente aus EN-GJS-600-3 1000
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Treatise on Estuarine and Coastal Science (Second Edition) Volume 3: Biogeochemical Cycling 2024 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3342329
求助须知:如何正确求助?哪些是违规求助? 2969479
关于积分的说明 8640014
捐赠科研通 2649419
什么是DOI,文献DOI怎么找? 1450702
科研通“疑难数据库(出版商)”最低求助积分说明 671949
邀请新用户注册赠送积分活动 661170