Ensembling shallow siamese architectures to assess functional asymmetry in Alzheimer’s disease progression

计算机科学 人工智能 模式识别(心理学) 地图集(解剖学) 维数之咒 脑图谱 医学 解剖
作者
Juan E. Arco,Andrés Ortíz,Diego Castillo-Barnés,J. M. Górriz,Javier Ramı́rez
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:134: 109991-109991 被引量:8
标识
DOI:10.1016/j.asoc.2023.109991
摘要

The development of methods based on artificial intelligence for the classification of medical imaging is widespread.Given the high dimensionality of this type of images, it is imperative to use the information contained in relevant regions for further classification.This information can be derived from the morphology of the region of interest, in terms of measurements such as area, perimeter, etc.However, the performance of the classification system strongly depends on the correct selection of the type of information employed.We propose in this work an alternative for evaluating differences between brain regions that relies on the basis of Siamese neural networks.Initially, brain scans are delimited by an anatomical atlas.Next, each pair of regions of interest is then entered into a Siamese network, which is formed by relating the distance between the two individual outputs and the corresponding label.Features are extracted from the embeddings of the final linear layer.Finally, the classification is performed by combining the characteristics of each pair of regions into an ensemble architecture.Performance was assessed by determining how asymmetry between the right and left hemispheres changes during progressive brain degeneration, from mild cognitive impairment to severe atrophy associated with Alzheimer's disease *
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助李李采纳,获得10
刚刚
Elephes关注了科研通微信公众号
刚刚
13455完成签到,获得积分10
2秒前
2秒前
setmefree发布了新的文献求助10
2秒前
天天快乐应助...采纳,获得10
2秒前
naturehome发布了新的文献求助10
3秒前
orixero应助仁爱发卡采纳,获得10
3秒前
薰硝壤应助LingZhang采纳,获得10
3秒前
4秒前
听海完成签到 ,获得积分10
4秒前
斯文败类应助可靠的寒风采纳,获得10
4秒前
丁杰完成签到 ,获得积分10
6秒前
IF发布了新的文献求助10
7秒前
可爱的小熊猫完成签到,获得积分20
8秒前
SciGPT应助周乘风采纳,获得10
8秒前
Tache发布了新的文献求助10
9秒前
斯文败类应助聪慧的橘子采纳,获得10
9秒前
10秒前
yyyk完成签到,获得积分10
10秒前
11秒前
lc339发布了新的文献求助10
13秒前
14秒前
14秒前
走着完成签到,获得积分10
14秒前
17秒前
科研的师弟应助Lemon采纳,获得10
17秒前
吧唧吧唧发布了新的文献求助20
19秒前
wangxin发布了新的文献求助10
20秒前
samifranco发布了新的文献求助10
20秒前
21秒前
蒙古马完成签到 ,获得积分10
22秒前
22秒前
赘婿应助IF采纳,获得10
22秒前
lc339完成签到,获得积分10
23秒前
23秒前
Tache完成签到,获得积分10
23秒前
23秒前
24秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149194
求助须知:如何正确求助?哪些是违规求助? 2800255
关于积分的说明 7839329
捐赠科研通 2457827
什么是DOI,文献DOI怎么找? 1308138
科研通“疑难数据库(出版商)”最低求助积分说明 628428
版权声明 601706