MONITORING OF RAIL-TRACKS BASED ON MEASURED ACCELERATION DATA

压舱物 加速度计 火车 磁道(磁盘驱动器) 振动器 加速度 快速傅里叶变换 振动 工程类 锤子 计算机科学 信号(编程语言) 汽车工程 声学 模拟 结构工程 电气工程 机械工程 算法 操作系统 物理 经典力学 地图学 程序设计语言 地理
作者
Mohammad Shamim Miah,Werner Lienhart
标识
DOI:10.12783/shm2021/36244
摘要

Railway tracks are used as mass transportation system for transporting large number of people and goods from place-to-place to keep the economy running smoothly. Hence it is inevitable to keep the tracks healthy for safe and on-time movement of trains. Traintracks are complex systems that contain ballast, sleepers, fasteners and rails. Therefore, monitoring only one/two elements (e.g., ballast/train-track) will not provide enough information to understand the overall performance of the railway tracks. To tackle such issue, herein a sensor fusion i.e., accelerometers, fiber-optic sensors, strategy is adopted and sensors are placed at different locations of a real rail-track. In order to measure the vibration signal four accelerometers are employed, first one is placed on the rail (between two sleepers), second one is installed on the rail but above the sleeper, third one is exactly on the sleeper, and last one is on the precast railway trough. In a first step, the investigation has focused into accelerometers data only. The tests are performed for the following loading conditions: (i) shaking the track via an APS400 type shaker, (ii) hitting the track by an impact hammer, and (iii) by passing a real train on the track. The time-series data are analyzed and the frequencies and spectrums are estimated via the use of fast Fourier transform (FFT). The changes of frequencies of the tested rail-track at different locations due to the various loading conditions are observed. In a later step, an autoregressive type time-series model has been developed and validated where the initially obtained results show good agreement with the measured data. The current findings will assist to monitor the rail-track for any further changes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
snow发布了新的文献求助10
刚刚
DR_Su发布了新的文献求助80
刚刚
hotcas完成签到,获得积分10
1秒前
自建完成签到,获得积分10
1秒前
Mannose完成签到,获得积分10
1秒前
nanalalal发布了新的文献求助10
1秒前
优秀的莹完成签到 ,获得积分10
1秒前
欢歌笑语完成签到,获得积分10
2秒前
瘾9完成签到,获得积分10
3秒前
3秒前
杏苑鸽子完成签到,获得积分10
3秒前
王老八发布了新的文献求助10
4秒前
xiaxia发布了新的文献求助10
4秒前
4秒前
自然的菲鹰完成签到,获得积分10
5秒前
cool少发布了新的文献求助10
5秒前
菠萝炒蛋加饭完成签到 ,获得积分10
5秒前
李爱国应助裴裴采纳,获得10
6秒前
初亦非发布了新的文献求助20
7秒前
pp完成签到 ,获得积分10
7秒前
GTRK完成签到 ,获得积分10
7秒前
变形金刚发布了新的文献求助10
7秒前
iffee82完成签到,获得积分10
7秒前
善良青筠完成签到 ,获得积分10
7秒前
strive完成签到 ,获得积分10
8秒前
陶天完成签到,获得积分20
8秒前
an完成签到,获得积分10
8秒前
Komorebi完成签到,获得积分10
9秒前
opticsLM完成签到,获得积分10
10秒前
李健的小迷弟应助王老八采纳,获得10
10秒前
长瓦完成签到,获得积分10
11秒前
azhu完成签到 ,获得积分10
11秒前
依梦完成签到,获得积分10
11秒前
12秒前
可爱的函函应助an采纳,获得10
13秒前
14秒前
14秒前
heiehihahah完成签到,获得积分20
14秒前
14秒前
JamesPei应助dllz采纳,获得10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151113
求助须知:如何正确求助?哪些是违规求助? 2802591
关于积分的说明 7848835
捐赠科研通 2459966
什么是DOI,文献DOI怎么找? 1309420
科研通“疑难数据库(出版商)”最低求助积分说明 628897
版权声明 601757