Efficient Deep Reinforcement Learning-Enabled Recommendation

强化学习 计算机科学 人工智能 机器学习 推荐系统 可用性 样品(材料) 理论(学习稳定性) 特征(语言学) 可重用性 深度学习 特征提取 人机交互 哲学 软件 程序设计语言 化学 色谱法 语言学
作者
Guangyao Pang,Xiaoming Wang,Liang Wang,Fei Hao,Yaguang Lin,Pengfei Wan,Geyong Min
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:10 (2): 871-886 被引量:12
标识
DOI:10.1109/tnse.2022.3224028
摘要

Existing recommendations based on machine learning are mainly based on supervised learning. However, these methods affected by historical behavior often bring great difficulties on mining high-quality long-tail items, achieving cold-start recommendations, and causing response inability to real-time environment changes. To this end, this paper proposes a Deep Reinforcement Learning-enabled Recommendation based on Hierarchical attention and Sample-enhanced priority experience replay (HEDRL-Rec). First, we propose a hierarchical attention mechanism to extract more hidden information, including different contributions from single feature and overall feature (comprising combined feature), for enhancing features extraction ability of Actor-Critic architecture. Then, by considering the reusability of historical experiences and differences their contributions, we then propose a sample-enhanced priority experience replay mechanism to alleviate the problems of sample imbalance, sparse data, and excessive action space, where, thereby realizing personalized recommendations in real-time changing environments. Finally, we develop a deep reinforcement learning-enabled recommendation algorithm to solve the problems of non-convergence in the Critic. Extensive experiments demonstrate that, in particular, the recommended Click-Through Rate (CTR) of the HEDRL-Rec is 10.55% higher than the state-of-the-art LIst-wise Recommendation framework based on the Deep Reinforcement learning (ILRD) scheme, while the HEDRL-Rec has better stability and usability in the recommendation scenario, effectively alleviating the cold-start problem of systems lacking manual annotation data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单以冬完成签到,获得积分20
1秒前
HK发布了新的文献求助10
2秒前
赵yy发布了新的文献求助10
2秒前
4秒前
5秒前
简单以冬发布了新的文献求助20
5秒前
顾矜应助淡淡的忆彤采纳,获得10
6秒前
7秒前
Jasper应助诚心的道罡采纳,获得30
7秒前
7秒前
7秒前
小酥肉完成签到,获得积分10
8秒前
啦啦啦完成签到,获得积分10
9秒前
科研通AI6应助石豪有采纳,获得10
10秒前
无花果应助gzmejiji采纳,获得10
11秒前
啦啦啦发布了新的文献求助10
12秒前
He完成签到,获得积分10
12秒前
fin.发布了新的文献求助10
12秒前
13秒前
上官若男应助莫羽倾尘采纳,获得10
13秒前
14秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
17秒前
老王完成签到,获得积分10
18秒前
18秒前
21秒前
21秒前
21秒前
旅客发布了新的文献求助10
22秒前
23秒前
Akim应助i3utter采纳,获得100
23秒前
23秒前
大个应助小纯采纳,获得10
24秒前
莫羽倾尘发布了新的文献求助10
26秒前
26秒前
mrpy完成签到,获得积分10
29秒前
30秒前
gzmejiji发布了新的文献求助10
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5507307
求助须知:如何正确求助?哪些是违规求助? 4602823
关于积分的说明 14482781
捐赠科研通 4536717
什么是DOI,文献DOI怎么找? 2486354
邀请新用户注册赠送积分活动 1468923
关于科研通互助平台的介绍 1441342