Efficient Deep Reinforcement Learning-Enabled Recommendation

强化学习 计算机科学 人工智能 机器学习 推荐系统 可用性 样品(材料) 理论(学习稳定性) 特征(语言学) 可重用性 深度学习 人机交互 哲学 软件 程序设计语言 化学 色谱法 语言学
作者
Guangyao Pang,Xiaoming Wang,Liang Wang,Fei Hao,Yaguang Lin,Pengfei Wan,Geyong Min
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:10 (2): 871-886 被引量:7
标识
DOI:10.1109/tnse.2022.3224028
摘要

Existing recommendations based on machine learning are mainly based on supervised learning. However, these methods affected by historical behavior often bring great difficulties on mining high-quality long-tail items, achieving cold-start recommendations, and causing response inability to real-time environment changes. To this end, this paper proposes a Deep Reinforcement Learning-enabled Recommendation based on Hierarchical attention and Sample-enhanced priority experience replay (HEDRL-Rec). First, we propose a hierarchical attention mechanism to extract more hidden information, including different contributions from single feature and overall feature (comprising combined feature), for enhancing features extraction ability of Actor-Critic architecture. Then, by considering the reusability of historical experiences and differences their contributions, we then propose a sample-enhanced priority experience replay mechanism to alleviate the problems of sample imbalance, sparse data, and excessive action space, where, thereby realizing personalized recommendations in real-time changing environments. Finally, we develop a deep reinforcement learning-enabled recommendation algorithm to solve the problems of non-convergence in the Critic. Extensive experiments demonstrate that, in particular, the recommended Click-Through Rate (CTR) of the HEDRL-Rec is 10.55% higher than the state-of-the-art LIst-wise Recommendation framework based on the Deep Reinforcement learning (ILRD) scheme, while the HEDRL-Rec has better stability and usability in the recommendation scenario, effectively alleviating the cold-start problem of systems lacking manual annotation data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
zzzq应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
hzauhzau发布了新的文献求助10
刚刚
刚刚
秀丽千山发布了新的文献求助10
刚刚
饭小心发布了新的文献求助10
刚刚
叶梓发布了新的文献求助10
刚刚
jy发布了新的文献求助10
刚刚
1秒前
1秒前
桐桐完成签到,获得积分0
1秒前
复杂天真应助iuhgnor采纳,获得10
2秒前
科研通AI5应助SCI采纳,获得10
2秒前
彭于晏应助灵巧荆采纳,获得10
2秒前
JamesPei应助Rrr采纳,获得10
3秒前
小蝴蝶完成签到 ,获得积分10
3秒前
赤邪发布了新的文献求助10
4秒前
dingdong发布了新的文献求助10
4秒前
爆米花应助phil采纳,获得10
5秒前
科研通AI5应助wang采纳,获得10
5秒前
6秒前
6秒前
Wxx发布了新的文献求助10
6秒前
兜兜完成签到,获得积分10
7秒前
dingdong发布了新的文献求助10
7秒前
7秒前
yuan发布了新的文献求助20
8秒前
HUAJIAO完成签到,获得积分10
8秒前
街舞腹肌修道帅哥完成签到,获得积分10
8秒前
zhangyulu完成签到 ,获得积分10
9秒前
9秒前
独特不斜完成签到,获得积分10
9秒前
海底落日发布了新的文献求助30
9秒前
共享精神应助紧张的妖妖采纳,获得10
9秒前
耶耶粘豆包完成签到 ,获得积分10
10秒前
dingdong发布了新的文献求助10
11秒前
xunxunmimi发布了新的文献求助50
11秒前
Z小姐发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794