超量积累植物
根际
环境修复
开枪
化学
植物
植物修复
生物
土壤水分
生态学
污染
细菌
遗传学
作者
Yabei Qiao,Zhi Lin,Luxi Li,Wei Ma,Jun Ge,Jiuzhou Chen,Lingli Lu,Shengke Tian
标识
DOI:10.1021/acs.est.4c01418
摘要
Endophytic fungus Serendipita indica can bolster plant growth and confer protection against various biotic and abiotic stresses. However, S. indica-reshaped rhizosphere microecology interactions and root–soil interface processes in situ at the submicrometer scale remain poorly understood. We combined amplicon sequencing and high-resolution nano X-ray fluorescence (nano-XRF) imaging of the root-soil interface to reveal cadmium (Cd) rhizosphere processes. S. indica can successfully colonize the roots of Sedum alfredii Hance, which induces a remarkable increase in shoot biomass by 211.32% and Cd accumulation by 235.72%. Nano-XRF images showed that S. indica colonization altered the Cd distribution in the rhizosphere and facilitated the proximity of more Cd and sulfur (S) to enter the roots and transport to the shoot. Furthermore, the rhizosphere-enriched microbiota demonstrated a more stable network structure after the S. indica inoculation. Keystone species were strongly associated with growth promotion and Cd absorption. For example, Comamonadaceae are closely related to the organic acid cycle and S bioavailability, which could facilitate Cd and S accumulation in plants. Meanwhile, Sphingomonadaceae could release auxin and boost plant biomass. In summary, we construct a mutualism system for beneficial fungi and hyperaccumulation plants, which facilitates high-efficient remediation of Cd-contaminated soils by restructuring the rhizosphere microbiota.
科研通智能强力驱动
Strongly Powered by AbleSci AI