Numerical analysis of ultrasound-mediated microbubble interactions in vascular systems: Effects on shear stress and vessel mechanics

剪应力 机械 物理 微血管 超声波 声学 医学 免疫组织化学 内科学
作者
Zeinab Heidary,Claus‐Dieter Ohl,Afsaneh Mojra
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (8)
标识
DOI:10.1063/5.0213656
摘要

The present study concerns the numerical modeling of microbubble oscillation within an elastic microvessel, aiming to enhance the safety and efficacy of ultrasound-mediated drug delivery and diagnostic imaging. The success of such applications depends on a thorough understanding of microbubble–vessel interactions. Despite some progress, the critical impact of the stabilizing shell around gas core has remained underexplored. To address this, we developed a novel numerical approach that models the stabilizing shell. Additionally, there is novelty in modeling consequent vascular deformation in response to complicated spatiotemporal microbubble oscillations. The novel approach was implemented for shear stress evaluation as a critical factor in vascular permeability. Finally, our unique approach offered novel insights into microbubble–vessel interactions under diverse acoustic conditions. Results indicated substantial impact of shell properties and acoustic parameters on induced shear stress. With a fourfold increase in acoustic pressure amplitude, 15.6-fold and sixfold increases were observed in maximum shear stress at 1 and 3 MHz, respectively. Also, the peak shear stress could reach up to 15.6 kPa for a shell elasticity of 0.2 N/m at 2.5 MHz. Furthermore, decreasing microvessel/bubble size ratio from 3 to 1.5 increased maximum shear stress from 5.1 to 24.3 kPa. These findings are crucial for optimizing ultrasound parameters in clinical applications, potentially improving treatment outcomes while minimizing risk of vessel damage. However, while our model demonstrated high fidelity in reproducing experimental observations, it is limited by assumptions of vessel geometry and homogeneity of vessel properties. Future work can improve our findings through in vitro experimental measurements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
团装完成签到 ,获得积分10
1秒前
ziyueqin完成签到,获得积分10
5秒前
Ava应助研友_LOoomL采纳,获得10
5秒前
5秒前
搜集达人应助1點點cui采纳,获得10
7秒前
ziyueqin发布了新的文献求助50
8秒前
8秒前
科研通AI2S应助wzm采纳,获得10
9秒前
10秒前
朴实香露完成签到,获得积分20
10秒前
小胡要读博完成签到,获得积分10
10秒前
12秒前
爱听歌契发布了新的文献求助10
13秒前
wzm完成签到,获得积分10
16秒前
17秒前
17秒前
yzy完成签到,获得积分10
17秒前
Mr_Qiu发布了新的文献求助10
19秒前
科研通AI2S应助完美的海秋采纳,获得10
19秒前
22秒前
3123939715发布了新的文献求助10
22秒前
今天要学习完成签到 ,获得积分10
22秒前
希望天下0贩的0应助Lion采纳,获得10
23秒前
喵总完成签到,获得积分10
24秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
大个应助科研通管家采纳,获得10
26秒前
彭于晏应助科研通管家采纳,获得10
26秒前
Bazinga应助科研通管家采纳,获得10
26秒前
华仔应助科研通管家采纳,获得10
26秒前
烟花应助科研通管家采纳,获得10
26秒前
27秒前
汉堡包应助zhengmin采纳,获得10
28秒前
511发布了新的文献求助10
31秒前
余生完成签到,获得积分20
31秒前
32秒前
35秒前
tz发布了新的文献求助10
35秒前
小欣发布了新的文献求助10
36秒前
36秒前
哇哇哇发布了新的文献求助10
36秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3238476
求助须知:如何正确求助?哪些是违规求助? 2883867
关于积分的说明 8231897
捐赠科研通 2551825
什么是DOI,文献DOI怎么找? 1380294
科研通“疑难数据库(出版商)”最低求助积分说明 649001
邀请新用户注册赠送积分活动 624631