Numerical analysis of ultrasound-mediated microbubble interactions in vascular systems: Effects on shear stress and vessel mechanics

剪应力 机械 物理 微血管 超声波 声学 医学 免疫组织化学 内科学
作者
Zeinab Heidary,Claus‐Dieter Ohl,Afsaneh Mojra
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (8) 被引量:6
标识
DOI:10.1063/5.0213656
摘要

The present study concerns the numerical modeling of microbubble oscillation within an elastic microvessel, aiming to enhance the safety and efficacy of ultrasound-mediated drug delivery and diagnostic imaging. The success of such applications depends on a thorough understanding of microbubble–vessel interactions. Despite some progress, the critical impact of the stabilizing shell around gas core has remained underexplored. To address this, we developed a novel numerical approach that models the stabilizing shell. Additionally, there is novelty in modeling consequent vascular deformation in response to complicated spatiotemporal microbubble oscillations. The novel approach was implemented for shear stress evaluation as a critical factor in vascular permeability. Finally, our unique approach offered novel insights into microbubble–vessel interactions under diverse acoustic conditions. Results indicated substantial impact of shell properties and acoustic parameters on induced shear stress. With a fourfold increase in acoustic pressure amplitude, 15.6-fold and sixfold increases were observed in maximum shear stress at 1 and 3 MHz, respectively. Also, the peak shear stress could reach up to 15.6 kPa for a shell elasticity of 0.2 N/m at 2.5 MHz. Furthermore, decreasing microvessel/bubble size ratio from 3 to 1.5 increased maximum shear stress from 5.1 to 24.3 kPa. These findings are crucial for optimizing ultrasound parameters in clinical applications, potentially improving treatment outcomes while minimizing risk of vessel damage. However, while our model demonstrated high fidelity in reproducing experimental observations, it is limited by assumptions of vessel geometry and homogeneity of vessel properties. Future work can improve our findings through in vitro experimental measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
比奇堡居民完成签到,获得积分10
1秒前
李爱国应助小米采纳,获得10
1秒前
涵泽完成签到,获得积分10
2秒前
3秒前
sunny完成签到,获得积分10
3秒前
3秒前
yy完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助30
4秒前
杨杨应助小红小绿采纳,获得10
5秒前
hh完成签到 ,获得积分10
7秒前
7秒前
7秒前
隐形曼青应助什么都不想采纳,获得10
8秒前
刘纾菡完成签到,获得积分10
8秒前
sunny发布了新的文献求助10
8秒前
8秒前
酷波er应助收手吧大哥采纳,获得10
9秒前
尽舜尧发布了新的文献求助10
9秒前
min关注了科研通微信公众号
9秒前
共享精神应助xu采纳,获得10
9秒前
faye发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
呆萌惜梦完成签到 ,获得积分10
10秒前
聪慧的冥完成签到,获得积分10
10秒前
11秒前
11秒前
星辰大海应助son采纳,获得10
11秒前
11秒前
Xdhcg发布了新的文献求助10
12秒前
切尔顿发布了新的文献求助50
13秒前
13秒前
在水一方应助罗大壮采纳,获得10
13秒前
13秒前
星辰大海应助lllllllxy采纳,获得10
14秒前
cslghe发布了新的文献求助10
14秒前
萧晓发布了新的文献求助10
14秒前
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762020
求助须知:如何正确求助?哪些是违规求助? 5533545
关于积分的说明 15401764
捐赠科研通 4898295
什么是DOI,文献DOI怎么找? 2634801
邀请新用户注册赠送积分活动 1582925
关于科研通互助平台的介绍 1538165