Scalable imaging-free spatial genomics through computational reconstruction

计算机科学 条形码 空间分析 可扩展性 背景(考古学) 基因组学 图像分辨率 数据挖掘 人工智能 模式识别(心理学) 生物 基因组 遥感 数据库 地理 基因 操作系统 古生物学 生物化学
作者
Chenlei Hu,Mehdi Borji,Giovanni Marrero,Vipin Kumar,Jackson A. Weir,Sachin V. Kammula,Evan Z. Macosko,Fei Chen
标识
DOI:10.1101/2024.08.05.606465
摘要

Abstract Tissue organization arises from the coordinated molecular programs of cells. Spatial genomics maps cells and their molecular programs within the spatial context of tissues. However, current methods measure spatial information through imaging or direct registration, which often require specialized equipment and are limited in scale. Here, we developed an imaging-free spatial transcriptomics method that uses molecular diffusion patterns to computationally reconstruct spatial data. To do so, we utilize a simple experimental protocol on two dimensional barcode arrays to establish an interaction network between barcodes via molecular diffusion. Sequencing these interactions generates a high dimensional matrix of interactions between different spatial barcodes. Then, we perform dimensionality reduction to regenerate a two-dimensional manifold, which represents the spatial locations of the barcode arrays. Surprisingly, we found that the UMAP algorithm, with minimal modifications can faithfully successfully reconstruct the arrays. We demonstrated that this method is compatible with capture array based spatial transcriptomics/genomics methods, Slide-seq and Slide-tags, with high fidelity. We systematically explore the fidelity of the reconstruction through comparisons with experimentally derived ground truth data, and demonstrate that reconstruction generates high quality spatial genomics data. We also scaled this technique to reconstruct high-resolution spatial information over areas up to 1.2 centimeters. This computational reconstruction method effectively converts spatial genomics measurements to molecular biology, enabling spatial transcriptomics with high accessibility, and scalability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
www完成签到,获得积分10
1秒前
lqf发布了新的文献求助10
2秒前
飞宇发布了新的文献求助10
2秒前
ding发布了新的文献求助10
2秒前
怕孤单的汉堡应助dogzz采纳,获得10
3秒前
3秒前
3秒前
王华瑞完成签到,获得积分10
4秒前
WNing发布了新的文献求助10
4秒前
完美世界应助老实乌冬面采纳,获得10
4秒前
棉花不是花完成签到,获得积分10
5秒前
5秒前
柚子想吃橘子完成签到,获得积分10
6秒前
anna1992发布了新的文献求助10
7秒前
NSZM980504发布了新的文献求助10
9秒前
斯文败类应助柚子采纳,获得10
10秒前
小逊完成签到,获得积分10
12秒前
追寻紫安发布了新的文献求助10
12秒前
13秒前
13秒前
郑盼秋完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
啊哭完成签到 ,获得积分10
16秒前
17秒前
17秒前
sun发布了新的文献求助10
18秒前
su_osako发布了新的文献求助50
18秒前
18秒前
18秒前
20秒前
21秒前
21秒前
21秒前
xiaomaxia发布了新的文献求助10
22秒前
Hosea发布了新的文献求助10
22秒前
shadow完成签到 ,获得积分10
22秒前
高分求助中
All the Birds of the World 3000
General Equilibrium, Capital and Macroeconomics 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3724290
求助须知:如何正确求助?哪些是违规求助? 3269754
关于积分的说明 9962029
捐赠科研通 2984242
什么是DOI,文献DOI怎么找? 1637318
邀请新用户注册赠送积分活动 777442
科研通“疑难数据库(出版商)”最低求助积分说明 747032