Fully Automated Deep Learning Model to Detect Clinically Significant Prostate Cancer at MRI

医学 前列腺癌 深度学习 前列腺 人工智能 磁共振成像 放射科 癌症 医学物理学 内科学 计算机科学
作者
Jason Cai,Hirotsugu Nakai,Shiba Kuanar,Adam T. Froemming,Candice W. Bolan,Akira Kawashima,Hiroaki Takahashi,Lance A. Mynderse,Chandler Dora,Mitchell R. Humphreys,Panagiotis Korfiatis,Pouria Rouzrokh,Alex Bratt,Gian Marco Conte,Bradley J. Erickson,Naoki Takahashi,Shannyn Wolfe
出处
期刊:Radiology [Radiological Society of North America]
卷期号:312 (2) 被引量:20
标识
DOI:10.1148/radiol.232635
摘要

Background Multiparametric MRI can help identify clinically significant prostate cancer (csPCa) (Gleason score ≥7) but is limited by reader experience and interobserver variability. In contrast, deep learning (DL) produces deterministic outputs. Purpose To develop a DL model to predict the presence of csPCa by using patient-level labels without information about tumor location and to compare its performance with that of radiologists. Materials and Methods Data from patients without known csPCa who underwent MRI from January 2017 to December 2019 at one of multiple sites of a single academic institution were retrospectively reviewed. A convolutional neural network was trained to predict csPCa from T2-weighted images, diffusion-weighted images, apparent diffusion coefficient maps, and T1-weighted contrast-enhanced images. The reference standard was pathologic diagnosis. Radiologist performance was evaluated as follows: Radiology reports were used for the internal test set, and four radiologists' PI-RADS ratings were used for the external (ProstateX) test set. The performance was compared using areas under the receiver operating characteristic curves (AUCs) and the DeLong test. Gradient-weighted class activation maps (Grad-CAMs) were used to show tumor localization. Results Among 5735 examinations in 5215 patients (mean age, 66 years ± 8 [SD]; all male), 1514 examinations (1454 patients) showed csPCa. In the internal test set (400 examinations), the AUC was 0.89 and 0.89 for the DL classifier and radiologists, respectively (
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张志远完成签到,获得积分10
刚刚
不吃橘子完成签到,获得积分10
1秒前
1秒前
1秒前
居居子完成签到,获得积分10
3秒前
淡定访琴完成签到,获得积分10
4秒前
4秒前
xwl9955完成签到 ,获得积分10
5秒前
Jennier完成签到,获得积分10
5秒前
周小鱼发布了新的文献求助10
5秒前
tidongzhiwu发布了新的文献求助10
5秒前
小张不吃香菜完成签到,获得积分20
5秒前
不吃橘子发布了新的文献求助10
6秒前
6秒前
自由的中蓝完成签到 ,获得积分10
6秒前
希望天下0贩的0应助郭翔采纳,获得10
6秒前
认真汲完成签到,获得积分10
7秒前
8秒前
shs发布了新的文献求助10
8秒前
fdpb完成签到,获得积分10
9秒前
啰友痕武次子完成签到,获得积分10
9秒前
汉堡包应助魔幻幻桃采纳,获得10
9秒前
9秒前
yisa完成签到,获得积分10
9秒前
NexusExplorer应助哈哈哈采纳,获得10
9秒前
9秒前
完美世界应助在下小绿采纳,获得10
10秒前
二倍速完成签到,获得积分20
10秒前
10秒前
白潇潇完成签到 ,获得积分10
10秒前
10秒前
10秒前
polly发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
caixiayin发布了新的文献求助10
13秒前
玉洁完成签到,获得积分10
13秒前
13秒前
JamesPei应助赵宝正采纳,获得10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009834
求助须知:如何正确求助?哪些是违规求助? 3549753
关于积分的说明 11303647
捐赠科研通 3284309
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886367
科研通“疑难数据库(出版商)”最低求助积分说明 811406