已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fully Automated Deep Learning Model to Detect Clinically Significant Prostate Cancer at MRI

医学 前列腺癌 深度学习 前列腺 人工智能 磁共振成像 放射科 癌症 医学物理学 内科学 计算机科学
作者
Jason Cai,Hirotsugu Nakai,Shiba Kuanar,Adam T. Froemming,Candice W. Bolan,Akira Kawashima,Hiroaki Takahashi,Lance A. Mynderse,Chandler Dora,Mitchell R. Humphreys,Panagiotis Korfiatis,Pouria Rouzrokh,Alex Bratt,Gian Marco Conte,Bradley J. Erickson,Naoki Takahashi,Shannyn Wolfe
出处
期刊:Radiology [Radiological Society of North America]
卷期号:312 (2) 被引量:20
标识
DOI:10.1148/radiol.232635
摘要

Background Multiparametric MRI can help identify clinically significant prostate cancer (csPCa) (Gleason score ≥7) but is limited by reader experience and interobserver variability. In contrast, deep learning (DL) produces deterministic outputs. Purpose To develop a DL model to predict the presence of csPCa by using patient-level labels without information about tumor location and to compare its performance with that of radiologists. Materials and Methods Data from patients without known csPCa who underwent MRI from January 2017 to December 2019 at one of multiple sites of a single academic institution were retrospectively reviewed. A convolutional neural network was trained to predict csPCa from T2-weighted images, diffusion-weighted images, apparent diffusion coefficient maps, and T1-weighted contrast-enhanced images. The reference standard was pathologic diagnosis. Radiologist performance was evaluated as follows: Radiology reports were used for the internal test set, and four radiologists' PI-RADS ratings were used for the external (ProstateX) test set. The performance was compared using areas under the receiver operating characteristic curves (AUCs) and the DeLong test. Gradient-weighted class activation maps (Grad-CAMs) were used to show tumor localization. Results Among 5735 examinations in 5215 patients (mean age, 66 years ± 8 [SD]; all male), 1514 examinations (1454 patients) showed csPCa. In the internal test set (400 examinations), the AUC was 0.89 and 0.89 for the DL classifier and radiologists, respectively (
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助积极的老鼠采纳,获得10
刚刚
可爱的函函应助zyb采纳,获得10
刚刚
Harbour-Y完成签到 ,获得积分10
1秒前
2秒前
Hus11221完成签到,获得积分10
2秒前
sun发布了新的文献求助10
3秒前
敲木鱼完成签到,获得积分20
4秒前
4秒前
asa发布了新的文献求助10
5秒前
爆米花应助庚午采纳,获得10
6秒前
酷波er应助小涛采纳,获得10
7秒前
Lucas应助xiao采纳,获得10
8秒前
8秒前
信仰g发布了新的文献求助10
8秒前
所所应助liuliu采纳,获得10
8秒前
8秒前
RuiLi完成签到,获得积分10
9秒前
9秒前
hh发布了新的文献求助10
9秒前
朱志伟发布了新的文献求助10
10秒前
10秒前
尚雅芳发布了新的文献求助10
11秒前
甘草次酸完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
卷心菜宝完成签到,获得积分10
14秒前
14秒前
14秒前
FashionBoy应助学医的小白采纳,获得30
15秒前
淡淡的南风完成签到,获得积分0
15秒前
15秒前
16秒前
乐乐应助hh采纳,获得10
16秒前
17秒前
ucjudgo完成签到,获得积分10
17秒前
18秒前
19秒前
ARVIN完成签到,获得积分20
20秒前
荒泷二斗发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5400986
求助须知:如何正确求助?哪些是违规求助? 4520031
关于积分的说明 14077904
捐赠科研通 4432951
什么是DOI,文献DOI怎么找? 2433919
邀请新用户注册赠送积分活动 1426111
关于科研通互助平台的介绍 1404733