Physics-informed quantum neural network for solving forward and inverse problems of partial differential equations

物理 人工神经网络 偏微分方程 反问题 应用数学 反向 量子 微分方程 统计物理学 量子力学 数学分析 人工智能 几何学 数学 计算机科学
作者
Yang Xiao,Liming Yang,C. Shu,S. C. Chew,Boo Cheong Khoo,Y. D. Cui,Y. Y. Liu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (9)
标识
DOI:10.1063/5.0226232
摘要

Recently, physics-informed neural networks (PINNs) have aroused an upsurge in the field of scientific computing including solving partial differential equations (PDEs), which convert the task of solving PDEs into an optimization challenge by adopting governing equations and definite conditions or observation data as loss functions. Essentially, the underlying logic of PINNs is based on the universal approximation and differentiability properties of classical neural networks (NNs). Recent research has revealed that quantum neural networks (QNNs), known as parameterized quantum circuits, also exhibit universal approximation and differentiability properties. This observation naturally suggests the application of PINNs to QNNs. In this work, we introduce a physics-informed quantum neural network (PI-QNN) by employing the QNN as the function approximator for solving forward and inverse problems of PDEs. The performance of the proposed PI-QNN is evaluated by various forward and inverse PDE problems. Numerical results indicate that PI-QNN demonstrates superior convergence over PINN when solving PDEs with exact solutions that are strongly correlated with trigonometric functions. Moreover, its accuracy surpasses that of PINN by two to three orders of magnitude, while requiring fewer trainable parameters. However, the computational time of PI-QNN exceeds that of PINN due to its operation on classical computers. This limitation may improve with the advent of commercial quantum computers in the future. Furthermore, we briefly investigate the impact of network architecture on PI-QNN performance by examining two different QNN architectures. The results suggest that increasing the number of trainable network layers can enhance the expressiveness of PI-QNN. However, an excessive number of data encoding layers significantly increases computational time, rendering the marginal gains in performance insufficient to compensate for the shortcomings in computational efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
starwan完成签到 ,获得积分10
1秒前
lnx完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
5秒前
5秒前
呆萌的金针菇完成签到 ,获得积分10
6秒前
Nick发布了新的文献求助10
6秒前
wawaaaah完成签到 ,获得积分10
6秒前
hzhang完成签到,获得积分10
7秒前
LS发布了新的文献求助10
7秒前
7秒前
美好斓发布了新的文献求助10
8秒前
hhhhhha发布了新的文献求助10
8秒前
虚心的仙人掌完成签到,获得积分10
9秒前
咕咕风发布了新的文献求助10
11秒前
漂亮送终发布了新的文献求助10
12秒前
负责的中道完成签到,获得积分10
12秒前
岂识浊醪妙理完成签到,获得积分10
12秒前
14秒前
烟花应助cyy采纳,获得10
14秒前
Emma完成签到 ,获得积分10
14秒前
韩钰小宝完成签到,获得积分10
17秒前
脑洞疼应助咕咕风采纳,获得10
17秒前
jagger完成签到,获得积分10
18秒前
帅气的小懒虫完成签到 ,获得积分10
19秒前
BOB发布了新的文献求助10
19秒前
happyccch完成签到,获得积分0
19秒前
19秒前
wanci应助tjfwg采纳,获得10
21秒前
白昼学派完成签到,获得积分10
21秒前
keyanwang完成签到 ,获得积分10
21秒前
乐观的海发布了新的文献求助10
21秒前
一枚科研小柿子完成签到,获得积分10
22秒前
24秒前
呆呆是一条鱼完成签到,获得积分10
25秒前
darren完成签到,获得积分10
25秒前
阿巴阿巴完成签到,获得积分20
26秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3347143
求助须知:如何正确求助?哪些是违规求助? 2973591
关于积分的说明 8660120
捐赠科研通 2654162
什么是DOI,文献DOI怎么找? 1453490
科研通“疑难数据库(出版商)”最低求助积分说明 672930
邀请新用户注册赠送积分活动 662998