Physics-informed quantum neural network for solving forward and inverse problems of partial differential equations

物理 人工神经网络 偏微分方程 反问题 应用数学 反向 量子 微分方程 统计物理学 量子力学 数学分析 人工智能 几何学 数学 计算机科学
作者
Yang Xiao,Liming Yang,C. Shu,S. C. Chew,Boo Cheong Khoo,Y. D. Cui,Y. Y. Liu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (9)
标识
DOI:10.1063/5.0226232
摘要

Recently, physics-informed neural networks (PINNs) have aroused an upsurge in the field of scientific computing including solving partial differential equations (PDEs), which convert the task of solving PDEs into an optimization challenge by adopting governing equations and definite conditions or observation data as loss functions. Essentially, the underlying logic of PINNs is based on the universal approximation and differentiability properties of classical neural networks (NNs). Recent research has revealed that quantum neural networks (QNNs), known as parameterized quantum circuits, also exhibit universal approximation and differentiability properties. This observation naturally suggests the application of PINNs to QNNs. In this work, we introduce a physics-informed quantum neural network (PI-QNN) by employing the QNN as the function approximator for solving forward and inverse problems of PDEs. The performance of the proposed PI-QNN is evaluated by various forward and inverse PDE problems. Numerical results indicate that PI-QNN demonstrates superior convergence over PINN when solving PDEs with exact solutions that are strongly correlated with trigonometric functions. Moreover, its accuracy surpasses that of PINN by two to three orders of magnitude, while requiring fewer trainable parameters. However, the computational time of PI-QNN exceeds that of PINN due to its operation on classical computers. This limitation may improve with the advent of commercial quantum computers in the future. Furthermore, we briefly investigate the impact of network architecture on PI-QNN performance by examining two different QNN architectures. The results suggest that increasing the number of trainable network layers can enhance the expressiveness of PI-QNN. However, an excessive number of data encoding layers significantly increases computational time, rendering the marginal gains in performance insufficient to compensate for the shortcomings in computational efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
1秒前
独特乘风完成签到,获得积分10
2秒前
JamesPei应助汪汪队立大功采纳,获得10
3秒前
赘婿应助好滴捏采纳,获得10
4秒前
4秒前
5秒前
6秒前
kurumi0601完成签到,获得积分10
7秒前
8秒前
小情绪应助U9A采纳,获得10
10秒前
10秒前
毛毛发布了新的文献求助10
10秒前
Sue发布了新的文献求助80
11秒前
ccchen发布了新的文献求助10
12秒前
13秒前
13秒前
英姑应助荷珠采纳,获得30
14秒前
HOOKT完成签到,获得积分10
14秒前
15秒前
二猫完成签到,获得积分10
17秒前
17秒前
22秒前
LIO发布了新的文献求助10
23秒前
24秒前
Sue完成签到,获得积分10
25秒前
完美世界应助洛河三千星采纳,获得10
26秒前
明亮芯发布了新的文献求助10
26秒前
26秒前
29秒前
LIO完成签到,获得积分10
32秒前
yilin完成签到 ,获得积分10
32秒前
小二郎应助scq采纳,获得10
33秒前
缓慢醉卉发布了新的文献求助10
34秒前
35秒前
39秒前
runner发布了新的文献求助10
40秒前
Bryan应助jiangjiang采纳,获得10
41秒前
41秒前
避橙完成签到,获得积分10
42秒前
scq发布了新的文献求助10
42秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993533
求助须知:如何正确求助?哪些是违规求助? 3534281
关于积分的说明 11265112
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806303
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809710