作者
Gulnar Abdullayeva,Haoyu Liu,Ta-Chun Liu,Alison Simmons,Marco Novelli,Irada Huseynova,Viorica Lástun,Walter F. Bodmer
摘要
The poor prognosis of relatively undifferentiated cancers has long been recognized, suggesting that selection against differentiation and in favor of uncontrolled growth is one of the most powerful drivers of cancer progression. Goblet cells provide the mucous surface of the gut, and when present in colorectal cancers (CRC), the cancers are called mucinous. We have used the presence of MUC2, the main mucous product of goblet cells, and an associated gene product, TFF3, to classify a large panel of nearly 80 CRC-derived cell lines into five categories based on their levels of MUC2 and TFF3 expression. We have then shown that these five patterns of expression can be easily identified in the direct analysis of tumor specimens allowing a much finer characterization of CRCs with respect to the presence of goblet cell differentiation. In particular, about 30% of all CRCs fall into the category of expressing TFF3 but not MUC2, which has not previously been acknowledged. Using the cell line data, we suggest that there are up to 12 genes ( MUC2, TFF3, ATOH1, SPDEF, CDX1, CDX2, GATA6, HES1, ETS2, OLFM4, TOX3, and LGR5 ) that may be involved in selection against goblet cell differentiation in CRC by changes in methylation rather than mutations. Of these, LGR5 , which is particularly associated with lack of goblet cell features, may function in the control of differentiation rather than direct control of cell growth, as has so far mostly been assumed. These results emphasize the importance of methylation changes in driving cancer progression.