粒度
表面粗糙度
分解
曲面(拓扑)
表面光洁度
地质学
材料科学
几何学
计算机科学
数学
化学
复合材料
有机化学
操作系统
作者
Siyu Xue,Benjamin A. Storer,Rachel Glade,Hussein Aluie
摘要
Abstract The lunar surface contains a wide variety of topographic shapes and features, each with different distributions and scales, and any analysis technique to objectively measure roughness must respect these qualities. Coarse‐graining is a naturally scale‐dependent filtering technique that preserves scale‐dependent symmetries and produces coarse elevation maps that gradually erase the smaller features from the original topography. In this study of the lunar surface, we present two surface variability metrics obtained from coarse‐graining lunar topography: fine elevation and coarse curvature. Both metrics are isotropic, deterministic, slope‐independent, and coordinate‐agnostic. Fine (detrended) elevation is acquired by subtracting the coarse elevation from the original topography and contains features that are smaller than the coarse‐graining length‐scale. Coarse curvature is the Laplacian of coarsened topography, and naturally quantifies the curvature at any scale and indicates whether a location is elevated or depressed relative to its neighborhood at that scale. We find that highlands and maria have distinct roughness characteristics at all length‐scales. Our topographic spectra reveal four scale‐breaks that mark characteristic shifts in surface roughness: 100, 300, 1,000, and 4,000 km. Comparing fine elevation distributions between maria and highlands, we show that maria fine elevation is biased toward smaller‐magnitude elevations and that the maria–highland discrepancies are more pronounced at larger length‐scales. We also provide local examples of selected regions to demonstrate that these metrics can successfully distinguish geological features of different length‐scales.
科研通智能强力驱动
Strongly Powered by AbleSci AI