Noise Attenuation in Distributed Acoustic Sensing Data Using a Guided Unsupervised Deep Learning Network

衰减 噪音(视频) 声学 计算机科学 无监督学习 地质学 人工智能 物理 光学 图像(数学)
作者
Omar M. Saad,Matteo Ravasi,Tariq Alkhalifah
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (6): V573-V587 被引量:2
标识
DOI:10.1190/geo2024-0109.1
摘要

Distributed acoustic sensing (DAS) is a promising technology introducing a new paradigm in the acquisition of high-resolution seismic data. However, DAS data often show weak signals compared with the background noise, especially in challenging installation environments. In this study, we develop a new approach to denoise DAS data that leverages an unsupervised deep learning (DL) model, eliminating the need for labeled training data. The input DAS data undergo band-pass filtering to eliminate high-frequency content. Subsequently, a continuous wavelet transform (CWT) is performed, and the finest scale is used to guide the DL model in reconstructing the DAS signal. First, we extract 2D patches from the band-pass filtered data and the CWT scale of the data. Then, these patches are converted using an unrolling mechanism into 1D vectors to form the input of the DL model. A self-attention layer is included in each layer to extract the spatial relation between the band-pass filtered data and the CWT scale. Through an iterative process, the DL model tunes its parameters to suppress DAS noise, with the band-pass filtered data serving as the target for the network. The denoising performance of our framework is validated using field examples from the San Andreas Fault Observatory at Depth and Frontier Observatory for Research in Geothermal Energy data sets, where the data are recorded by a fiber-optic cable. Comparative analyses against three benchmark methods reveal the robust denoising performance of our framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
TKTK完成签到,获得积分10
2秒前
CaoRouLi发布了新的文献求助10
3秒前
李健应助徐振阳采纳,获得10
4秒前
郭阳完成签到,获得积分10
4秒前
张建发布了新的文献求助10
5秒前
Cloud关注了科研通微信公众号
7秒前
TKTK发布了新的文献求助10
7秒前
8秒前
Greta应助小熊维尼摇摇车采纳,获得10
9秒前
9秒前
斯文败类应助song采纳,获得10
10秒前
yun完成签到,获得积分20
12秒前
科研达人发布了新的文献求助10
12秒前
13秒前
xinyue946983发布了新的文献求助10
14秒前
Bailey发布了新的文献求助10
14秒前
CodeCraft应助CaoRouLi采纳,获得10
15秒前
慕青应助TKTK采纳,获得30
17秒前
Xiaojie完成签到,获得积分10
18秒前
19秒前
Ghost完成签到,获得积分10
19秒前
徐振阳发布了新的文献求助10
19秒前
21秒前
21秒前
独特元蝶发布了新的文献求助10
21秒前
23秒前
24秒前
25秒前
liangye2222发布了新的文献求助10
26秒前
26秒前
小毛驴完成签到,获得积分10
26秒前
27秒前
Huang_being发布了新的文献求助10
28秒前
refraincc发布了新的文献求助10
30秒前
song发布了新的文献求助10
32秒前
量子星尘发布了新的文献求助10
33秒前
Orange应助BeBrave1028采纳,获得10
33秒前
Andrew完成签到,获得积分10
33秒前
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988975
求助须知:如何正确求助?哪些是违规求助? 3531316
关于积分的说明 11253424
捐赠科研通 3269917
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068