scLEGA: an attention-based deep clustering method with a tendency for low expression of genes on single-cell RNA-seq data

RNA序列 计算生物学 基因 表达式(计算机科学) 聚类分析 计算机科学 基因表达 核糖核酸 人工智能 生物 遗传学 转录组 程序设计语言
作者
Zhenze Liu,Yingjian Liang,Guohua Wang,Tianjiao Zhang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (5)
标识
DOI:10.1093/bib/bbae371
摘要

Abstract Single-cell RNA sequencing (scRNA-seq) enables the exploration of biological heterogeneity among different cell types within tissues at a resolution. Inferring cell types within tissues is foundational for downstream research. Most existing methods for cell type inference based on scRNA-seq data primarily utilize highly variable genes (HVGs) with higher expression levels as clustering features, overlooking the contribution of HVGs with lower expression levels. To address this, we have designed a novel cell type inference method for scRNA-seq data, termed scLEGA. scLEGA employs a novel zero-inflated negative binomial (ZINB) loss function that fully considers the contribution of genes with lower expression levels and combines two distinct scRNA-seq clustering strategies through a multi-head attention mechanism. It utilizes a low-expression optimized denoising autoencoder, based on the novel ZINB model, to extract low-dimensional features and handle dropout events, and a GCN-based graph autoencoder (GAE) that leverages neighbor information to guide dimensionality reduction. The iterative fusion of denoising and topological embedding in scLEGA facilitates the acquisition of cluster-friendly cell representations in the hidden embedding, where similar cells are brought closer together. Compared to 12 state-of-the-art cell type inference methods on 15 scRNA-seq datasets, scLEGA demonstrates superior performance in clustering accuracy, scalability, and stability. Our scLEGA model codes are freely available at https://github.com/Masonze/scLEGA-main.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
超锅发布了新的文献求助10
刚刚
刚刚
Dr W发布了新的文献求助20
2秒前
4秒前
Lin发布了新的文献求助10
4秒前
灯灯发布了新的文献求助10
5秒前
张小咩咩完成签到 ,获得积分10
5秒前
科研通AI2S应助wllllll采纳,获得10
6秒前
乐乐应助世界采纳,获得10
7秒前
Lucas应助西河采纳,获得10
8秒前
12秒前
慈祥的百招完成签到,获得积分10
14秒前
14秒前
海雅完成签到 ,获得积分10
16秒前
19秒前
12544593556完成签到 ,获得积分10
20秒前
科研通AI2S应助野生菜狗采纳,获得10
21秒前
星辰大海应助高高不乐采纳,获得10
22秒前
chengcheng发布了新的文献求助10
22秒前
23秒前
juanjuan应助小龅牙吖采纳,获得10
23秒前
26秒前
烟花应助Lin采纳,获得10
26秒前
27秒前
FashionBoy应助肥肥采纳,获得10
29秒前
懵懂的怀曼完成签到,获得积分10
29秒前
CipherSage应助勤奋幻露采纳,获得10
30秒前
30秒前
31秒前
Owen应助semon采纳,获得10
31秒前
32秒前
娄医生完成签到,获得积分10
32秒前
Xing发布了新的文献求助10
32秒前
锌银12306发布了新的文献求助10
35秒前
35秒前
37秒前
bkagyin应助夜王采纳,获得10
38秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161053
求助须知:如何正确求助?哪些是违规求助? 2812453
关于积分的说明 7895410
捐赠科研通 2471252
什么是DOI,文献DOI怎么找? 1315934
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602094