Loader Bucket Working Angle Identification Method Based on YOLOv5s and EMA Attention Mechanism

装载机 计算机科学 卷积(计算机科学) 人工智能 帧速率 水准点(测量) 鉴定(生物学) 计算机视觉 职位(财务) 模拟 人工神经网络 生物 地理 经济 操作系统 植物 大地测量学 财务
作者
X ZHANG,Cui Bo,Zhaoxu Wang,Wangting Zeng
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 105488-105496
标识
DOI:10.1109/access.2024.3435146
摘要

In response to the issues of low recognition efficiency and large errors encountered in the process of identifying the working angle of the bucket during current automated loader construction operations, a method based on YOLOv5s and the EMA attention mechanism for loader bucket working angle identification is proposed. Initially, a small target detection head, utilizing YOLOv5s, was designed to enhance sensitivity towards target recognition. The EMA attention mechanism was introduced to increase the recognition rate of the target area and the positioning accuracy of the target frame, effectively differentiating the background area from the target area. The Focal-EIOU Loss function was added to address the slow convergence speed of YOLOv5. Subsequently, Depth Separable Convolution was employed to replace the standard convolution in the C3 module of the Backbone, improving the model's accuracy in identifying target deformation caused by changes in the bucket angle, reducing the computational load, and enhancing the model's operational speed. Experimental results demonstrate that the model's mean Average Precision (mAP) value reached 99.3%, a 3.0% increase over the benchmark model YOLOv5s. The GFLOPs reached 58.5, an increase of 42, with a growth rate of 254.55%. This method effectively enhances the precision and intelligence of loader construction operations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dylan发布了新的文献求助10
刚刚
刚刚
小泉完成签到,获得积分10
刚刚
小文不想看文献完成签到,获得积分10
刚刚
123完成签到,获得积分10
1秒前
酷波er应助terry采纳,获得10
1秒前
1秒前
1秒前
1秒前
Wu发布了新的文献求助10
3秒前
nanonamo发布了新的文献求助10
3秒前
肚子饿了发布了新的文献求助10
3秒前
4秒前
112我的完成签到,获得积分10
4秒前
4秒前
Yuna完成签到,获得积分10
4秒前
mjje完成签到,获得积分10
4秒前
5秒前
腾腾完成签到,获得积分10
5秒前
meng发布了新的文献求助10
5秒前
科研通AI6.1应助jjjj721采纳,获得10
6秒前
kcp发布了新的文献求助10
6秒前
6秒前
7秒前
chu发布了新的文献求助10
7秒前
万能图书馆应助Yxian采纳,获得10
7秒前
7秒前
sinlar发布了新的文献求助10
7秒前
着急的莫言完成签到,获得积分10
7秒前
付滋滋完成签到 ,获得积分10
7秒前
7秒前
9秒前
勤奋以山发布了新的文献求助30
9秒前
fan完成签到,获得积分10
9秒前
seven_yao完成签到,获得积分10
9秒前
Rixxed发布了新的文献求助10
10秒前
脑洞疼应助山茶采纳,获得10
10秒前
枯藤应助科研通管家采纳,获得10
10秒前
toutou应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784591
求助须知:如何正确求助?哪些是违规求助? 5683318
关于积分的说明 15464856
捐赠科研通 4913776
什么是DOI,文献DOI怎么找? 2644858
邀请新用户注册赠送积分活动 1592804
关于科研通互助平台的介绍 1547207