神经炎症
药理学
小胶质细胞
血脑屏障
医学
炎症
中枢神经系统
内科学
作者
Aihua Xie,Guowang Cheng,Jiaxin Wu,Zilin Li,Guang‐Tao Yu,Xiaozhen Zhu,Tongkai Chen
出处
期刊:Biomaterials
[Elsevier]
日期:2024-08-06
卷期号:312: 122749-122749
标识
DOI:10.1016/j.biomaterials.2024.122749
摘要
The prevalence of Alzheimer's disease (AD) is increasing globally due to population aging. However, effective clinical treatment strategies for AD still remain elusive. The mechanisms underlying AD onset and the interplay between its pathological factors have so far been unclear. Evidence indicates that AD progression is ultimately driven by neuronal loss, which in turn is caused by neuroapoptosis and neuroinflammation. Therefore, the inhibition of neuroapoptosis and neuroinflammation could be a useful anti-AD strategy. Nonetheless, the delivery of active drug agents into the brain parenchyma is hindered by the blood-brain barrier (BBB). To address this challenge, we fabricated a black phosphorus nanosheet (BP)-based methylene blue (MB) delivery system (BP-MB) for AD therapy. After confirming the successful preparation of BP-MB, we proved that its BBB-crossing ability was enhanced under near-infrared light irradiation. In vitro pharmacodynamics analysis revealed that BP and MB could synergistically scavenge excessive reactive oxygen species (ROS) in okadaic acid (OA)-treated PC12 cells and lipopolysaccharide (LPS)-treated BV2 cells, thus efficiently reversing neuroapoptosis and neuroinflammation. To study in vivo pharmacodynamics, we established a mouse model of AD mice, and behavioral tests confirmed that BP-MB treatment could successfully improve cognitive function in these animals. Notably, the results of pathological evaluation were consistent with those of the in vitro assays. The findings demonstrated that BP-MB could scavenge excessive ROS and inhibit Tau hyperphosphorylation, thereby alleviating downstream neuroapoptosis and regulating the polarization of microglia from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. Overall, this study highlights the therapeutic potential of a smart nanomedicine with the capability of reversing neuroapoptosis and neuroinflammation for AD treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI