计算机科学
人工智能
卷积神经网络
脑电图
模式识别(心理学)
图形
情绪识别
语音识别
心理学
理论计算机科学
神经科学
作者
Xiaodong Yang,Zhu Zhengping,Guangkang Jiang,Dandan Wu,Aijun He,Jun Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-13
标识
DOI:10.1109/jbhi.2024.3449083
摘要
Thanks to advancements in artificial intelligence and brain-computer interface (BCI) research, there has been increasing attention towards emotion recognition techniques based on electro encephalogram (EEG) recently. The complexity of EEG data poses a challenge when it comes to accurately classifying emotions by integrating time, frequency, and spatial domain features. To address this challenge, this paper proposes a fusion model called DC-ASTGCN, which combines the strengths of deep convolutional neural network (DCNN) and adaptive spatiotemporal graphic convolutional neural network (ASTGCN) to comprehensively analyze and understand EEG signals. The DCNN focuses on extracting frequency-domain and local spatial features from EEG signals to identify brain region activity patterns, while the ASTGCN, with its spatiotemporal attention mechanism and adaptive brain topology layer, reveals the functional connectivity features between brain regions in different emotional states. This integration significantly enhances the model's ability to understand and recognize emotional states. Extensive experiments conducted on the DEAP and SEED datasets demonstrate that the DC-ASTGCN model outperforms existing state-of the-art methods in terms of emotion recognition accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI