M2GCNet: Multi-Modal Graph Convolution Network for Precise Brain Tumor Segmentation Across Multiple MRI Sequences

计算机科学 图形 分割 人工智能 像素 图像分割 模式识别(心理学) 卷积(计算机科学) 情态动词 理论计算机科学 人工神经网络 化学 高分子化学
作者
Tongxue Zhou
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4896-4910 被引量:14
标识
DOI:10.1109/tip.2024.3451936
摘要

Accurate segmentation of brain tumors across multiple MRI sequences is essential for diagnosis, treatment planning, and clinical decision-making. In this paper, I propose a cutting-edge framework, named multi-modal graph convolution network (M2GCNet), to explore the relationships across different MR modalities, and address the challenge of brain tumor segmentation. The core of M2GCNet is the multi-modal graph convolution module (M2GCM), a pivotal component that represents MR modalities as graphs, with nodes corresponding to image pixels and edges capturing latent relationships between pixels. This graph-based representation enables the effective utilization of both local and global contextual information. Notably, M2GCM comprises two important modules: the spatial-wise graph convolution module (SGCM), adept at capturing extensive spatial dependencies among distinct regions within an image, and the channel-wise graph convolution module (CGCM), dedicated to modelling intricate contextual dependencies among different channels within the image. Additionally, acknowledging the intrinsic correlation present among different MR modalities, a multi-modal correlation loss function is introduced. This novel loss function aims to capture specific nonlinear relationships between correlated modality pairs, enhancing the model's ability to achieve accurate segmentation results. The experimental evaluation on two brain tumor datasets demonstrates the superiority of the proposed M2GCNet over other state-of-the-art segmentation methods. Furthermore, the proposed method paves the way for improved tumor diagnosis, multi-modal information fusion, and a deeper understanding of brain tumor pathology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xll发布了新的文献求助10
刚刚
FashionBoy应助Hunter采纳,获得10
刚刚
稳重香芦关注了科研通微信公众号
2秒前
2秒前
2秒前
球球的铲屎官完成签到,获得积分10
2秒前
所所应助疯狂的石头采纳,获得10
3秒前
大模型应助LDD采纳,获得30
4秒前
万能图书馆应助yss采纳,获得10
4秒前
5秒前
6秒前
嘿嘿应助洽洽瓜子shine采纳,获得30
6秒前
6秒前
7秒前
科研通AI6应助授鱼以渔采纳,获得10
7秒前
Juliet发布了新的文献求助10
7秒前
8秒前
斯文败类应助Timezzz采纳,获得10
8秒前
8秒前
名侦探毛利小五郎完成签到,获得积分10
8秒前
小袁冲冲冲完成签到,获得积分10
8秒前
顾矜应助自由寄柔采纳,获得10
9秒前
温暖的从云完成签到 ,获得积分10
9秒前
十八岁不想说话完成签到,获得积分10
10秒前
MchemG应助默默采纳,获得10
11秒前
ok发布了新的文献求助10
11秒前
12秒前
清栀发布了新的文献求助10
12秒前
Dinglin发布了新的文献求助10
13秒前
星辰大海应助Xhh采纳,获得10
13秒前
gtx完成签到 ,获得积分10
13秒前
稳重香芦发布了新的文献求助10
14秒前
斯文败类应助乔雪采纳,获得10
14秒前
16秒前
17秒前
17秒前
18秒前
18秒前
不过尔尔完成签到,获得积分10
19秒前
科研通AI6应助未央采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588611
求助须知:如何正确求助?哪些是违规求助? 4671642
关于积分的说明 14788202
捐赠科研通 4625797
什么是DOI,文献DOI怎么找? 2531896
邀请新用户注册赠送积分活动 1500456
关于科研通互助平台的介绍 1468324