M2GCNet: Multi-modal Graph Convolution Network for Precise Brain Tumor Segmentation Across Multiple MRI Sequences

计算机科学 图形 分割 人工智能 像素 图像分割 模式识别(心理学) 卷积(计算机科学) 情态动词 理论计算机科学 人工神经网络 化学 高分子化学
作者
Tongxue Zhou
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4896-4910
标识
DOI:10.1109/tip.2024.3451936
摘要

Accurate segmentation of brain tumors across multiple MRI sequences is essential for diagnosis, treatment planning, and clinical decision-making. In this paper, I propose a cutting-edge framework, named multi-modal graph convolution network (M2GCNet), to explore the relationships across different MR modalities, and address the challenge of brain tumor segmentation. The core of M2GCNet is the multi-modal graph convolution module (M2GCM), a pivotal component that represents MR modalities as graphs, with nodes corresponding to image pixels and edges capturing latent relationships between pixels. This graph-based representation enables the effective utilization of both local and global contextual information. Notably, M2GCM comprises two important modules: the spatial-wise graph convolution module (SGCM), adept at capturing extensive spatial dependencies among distinct regions within an image, and the channel-wise graph convolution module (CGCM), dedicated to modelling intricate contextual dependencies among different channels within the image. Additionally, acknowledging the intrinsic correlation present among different MR modalities, a multi-modal correlation loss function is introduced. This novel loss function aims to capture specific nonlinear relationships between correlated modality pairs, enhancing the model's ability to achieve accurate segmentation results. The experimental evaluation on two brain tumor datasets demonstrates the superiority of the proposed M2GCNet over other state-of-the-art segmentation methods. Furthermore, the proposed method paves the way for improved tumor diagnosis, multi-modal information fusion, and a deeper understanding of brain tumor pathology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
害羞的书琴完成签到,获得积分20
刚刚
Jasper应助just flow采纳,获得30
1秒前
方越应助沐风采纳,获得10
1秒前
小马甲应助阿利呀采纳,获得20
1秒前
何何何完成签到,获得积分10
2秒前
imbecile完成签到 ,获得积分10
4秒前
yufeng完成签到,获得积分10
4秒前
时光如梭发布了新的文献求助10
5秒前
5秒前
6秒前
安静幻枫应助xxxxx采纳,获得30
9秒前
9秒前
我是老大应助寒冷寒安采纳,获得10
10秒前
11秒前
taozhiqi完成签到,获得积分10
12秒前
李富贵发布了新的文献求助10
12秒前
13秒前
Sygganggang发布了新的文献求助10
13秒前
15秒前
Dec完成签到 ,获得积分10
16秒前
17秒前
NexusExplorer应助lyric采纳,获得10
17秒前
默默的巧荷完成签到,获得积分10
17秒前
碧蓝板栗发布了新的文献求助20
17秒前
合适静槐完成签到,获得积分10
17秒前
19秒前
江子川发布了新的文献求助10
20秒前
李富贵完成签到,获得积分20
20秒前
20秒前
华仔应助包容的自行车采纳,获得10
21秒前
young_joint完成签到,获得积分10
23秒前
正直念柏发布了新的文献求助10
23秒前
动人的cc发布了新的文献求助10
24秒前
24秒前
25秒前
Akim应助寒冷悟空采纳,获得10
26秒前
英俊的铭应助小猪采纳,获得10
27秒前
27秒前
英俊的铭应助香辣鸡腿堡采纳,获得10
27秒前
28秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330178
求助须知:如何正确求助?哪些是违规求助? 2959781
关于积分的说明 8596907
捐赠科研通 2638194
什么是DOI,文献DOI怎么找? 1444196
科研通“疑难数据库(出版商)”最低求助积分说明 669063
邀请新用户注册赠送积分活动 656596