Comprehensive segmentation of gray matter structures on T1-weighted brain MRI: A Comparative Study of CNN, CNN hybrid-transformer or -Mamba architectures

医学 分割 灰色(单位) 人工智能 磁共振成像 模式识别(心理学) 神经科学 放射科 计算机科学 生物
作者
Yujia Wei,Jaidip Jagtap,Yashbir Singh,Bardia Khosravi,Jason Cai,Jeffrey L. Gunter,Bradley J. Erickson
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
卷期号:: ajnr.A8544-ajnr.A8544 被引量:2
标识
DOI:10.3174/ajnr.a8544
摘要

ABSTRACT

BACKGROUND AND PURPOSE:

Recent advances in deep learning have shown promising results in medical image analysis and segmentation. However, most brain MRI segmentation models are limited by the size of their datasets and/or the number of structures they can identify. This study evaluates the performance of six advanced deep learning models in segmenting 122 brain structures from T1-weighted MRI scans, aiming to identify the most effective model for clinical and research applications.

MATERIALS AND METHODS:

1,510 T1-weighted MRIs were used to compare six deep-learning models for the segmentation of 122 distinct gray matter structures: nnU-Net, SegResNet, SwinUNETR, UNETR, U-Mamba_BOT and U-Mamba_ Enc. Each model was rigorously tested for accuracy using the Dice Similarity Coefficient (DSC) and the 95th percentile Hausdorff Distance (HD95). Additionally, the volume of each structure was calculated and compared between normal control (NC) and Alzheimer9s Disease (AD) patients.

RESULTS:

U-Mamba_Bot achieved the highest performance with a median DSC of 0.9112 [IQR:0.8957, 0.9250]. nnU-Net achieved a median DSC of 0.9027 [IQR: 0.8847, 0.9205] and had the highest HD95 of 1.392[IQR: 1.174, 2.029]. The value of each HD95 (<3mm) indicates its superior capability in capturing detailed brain structures accurately. Following segmentation, volume calculations were performed, and the resultant volumes of normal controls and AD patients were compared. The volume changes observed in thirteen brain substructures were all consistent with those reported in existing literature, reinforcing the reliability of the segmentation outputs.

CONCLUSIONS:

This study underscores the efficacy of U-Mamba_Bot as a robust tool for detailed brain structure segmentation in T1-weighted MRI scans. The congruence of our volumetric analysis with the literature further validates the potential of advanced deep-learning models to enhance the understanding of neurodegenerative diseases such as AD. Future research should consider larger datasets to validate these findings further and explore the applicability of these models in other neurological conditions. ABBREVIATIONS: AD = Alzheimer's Disease; ADNI = Alzheimer's Disease Neuroimaging Initiative; DSC = Dice Similarity Coefficient; HD95 = the 95th Percentile Hausdorff Distance; IQR = Interquartile Range; NC = Normal Control; SSMs = State-space Sequence Models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
义气山柳完成签到,获得积分10
刚刚
1秒前
酷酷妙梦完成签到,获得积分10
1秒前
1秒前
斯文败类应助小罗shining采纳,获得10
1秒前
kaka发布了新的文献求助10
1秒前
SSSstriker完成签到,获得积分10
1秒前
任性的岱周完成签到,获得积分10
2秒前
儒雅的雁山完成签到 ,获得积分10
2秒前
夏夏发布了新的文献求助10
2秒前
宇哈哈完成签到,获得积分20
2秒前
Hum0ro98完成签到,获得积分10
2秒前
失眠的哈密瓜完成签到,获得积分10
3秒前
坦率芝麻完成签到,获得积分10
3秒前
XY完成签到,获得积分10
4秒前
4秒前
Jingzi完成签到,获得积分10
4秒前
4秒前
Wunrry完成签到 ,获得积分10
4秒前
5秒前
宇哈哈发布了新的文献求助10
5秒前
5秒前
wqwq69完成签到,获得积分10
5秒前
我是老大应助yyy采纳,获得10
5秒前
7秒前
惊奇先生1完成签到,获得积分10
7秒前
清秀的SONG完成签到 ,获得积分10
8秒前
乐乐应助zzz采纳,获得10
8秒前
9秒前
木易心完成签到,获得积分10
9秒前
淡淡晓露完成签到,获得积分10
9秒前
10秒前
满意富发布了新的文献求助10
10秒前
思垢发布了新的文献求助10
10秒前
Hollow完成签到,获得积分10
11秒前
11秒前
舒心的怜翠完成签到 ,获得积分10
11秒前
在水一方应助iuv采纳,获得10
12秒前
追寻的易巧完成签到 ,获得积分10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516785
求助须知:如何正确求助?哪些是违规求助? 3098996
关于积分的说明 9242585
捐赠科研通 2794278
什么是DOI,文献DOI怎么找? 1533379
邀请新用户注册赠送积分活动 712721
科研通“疑难数据库(出版商)”最低求助积分说明 707431