清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Amplifying Nonlinear Ultrasonic Signatures for Fatigue Damage Detection Via a Graded Elastic Meta-Enhancer

超声波传感器 非线性系统 材料科学 声学 增强子 计算机科学 复合材料 物理 化学 生物化学 基因表达 量子力学 基因
作者
Yiran Tian,Haoyu Fu,Yanfeng Shen
标识
DOI:10.1115/qnde2024-135199
摘要

Abstract Fatigue cracks pose a significant threat to engineering structures owing to their inconspicuous nature and difficulty in detection. However, for the nascent stage of fatigue crack growth, the nonlinear attributes are faint and challenging to discern and characterize, thereby compromising the practical effectiveness of the detection methodology. Consequently, the amplification of these subtle nonlinear features becomes imperative to improve the detection efficiency. In recent developments, elastic metamaterials, comprising artificially engineered structures, have demonstrated considerable potential in controlling wave modes and frequencies. Leveraging the metamaterial concept, this paper proposes an elastic meta-enhancer (ME), featuring special wave dispersion properties to facilitate effective wave collection for second higher harmonic through a graded array of resonators attached to an elastic plate, showcasing the improvement of sensitivity in detecting cracks. The amalgamation of resonance and spatial grading within surface arrays of structures enable meta-units to demonstrate broadband wave trapping, resulting in substantial amplification of out-of-plane displacement within the host plate medium at resonator positions, where the second higher harmonic component accumulates. Harnessing the interplay of these effects—deceleration in the resonators and amplification in the host beam—the numerical findings demonstrate that, given a sufficiently prolonged excitation time, the elastic ME can amplify the faint magnitude of the second higher harmonic produced by fatigue cracks within the host plate structure. The paper concludes with a summary, concluding remarks, and recommendations for future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
自然松完成签到 ,获得积分10
45秒前
好名字完成签到,获得积分10
50秒前
55秒前
Akim应助如沐春风采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
跳跃的鹏飞完成签到 ,获得积分10
1分钟前
可爱的函函应助奥丁蒂法采纳,获得10
2分钟前
2分钟前
2分钟前
奥丁蒂法发布了新的文献求助10
2分钟前
2分钟前
如沐春风发布了新的文献求助10
2分钟前
上官若男应助如沐春风采纳,获得10
2分钟前
songnvshi完成签到 ,获得积分10
2分钟前
鬼见愁应助贾南烟采纳,获得10
3分钟前
彭于晏应助奥丁蒂法采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
DJ_Tokyo完成签到,获得积分10
3分钟前
4分钟前
奥丁蒂法发布了新的文献求助10
4分钟前
4分钟前
呆呆的猕猴桃完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
在水一方应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
a46539749完成签到 ,获得积分10
5分钟前
lovexa完成签到,获得积分10
5分钟前
5分钟前
琉璃岁月完成签到,获得积分10
5分钟前
tjpuzhang完成签到 ,获得积分10
6分钟前
阳光森林完成签到 ,获得积分10
6分钟前
ybwei2008_163完成签到,获得积分20
6分钟前
隐形曼青应助Demi_Ming采纳,获得10
6分钟前
6分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311225
求助须知:如何正确求助?哪些是违规求助? 2943928
关于积分的说明 8516766
捐赠科研通 2619312
什么是DOI,文献DOI怎么找? 1432227
科研通“疑难数据库(出版商)”最低求助积分说明 664536
邀请新用户注册赠送积分活动 649815