Amplifying Nonlinear Ultrasonic Signatures for Fatigue Damage Detection Via a Graded Elastic Meta-Enhancer

超声波传感器 非线性系统 材料科学 声学 增强子 计算机科学 复合材料 物理 化学 生物化学 量子力学 基因 基因表达
作者
Yiran Tian,Haoyu Fu,Yanfeng Shen
标识
DOI:10.1115/qnde2024-135199
摘要

Abstract Fatigue cracks pose a significant threat to engineering structures owing to their inconspicuous nature and difficulty in detection. However, for the nascent stage of fatigue crack growth, the nonlinear attributes are faint and challenging to discern and characterize, thereby compromising the practical effectiveness of the detection methodology. Consequently, the amplification of these subtle nonlinear features becomes imperative to improve the detection efficiency. In recent developments, elastic metamaterials, comprising artificially engineered structures, have demonstrated considerable potential in controlling wave modes and frequencies. Leveraging the metamaterial concept, this paper proposes an elastic meta-enhancer (ME), featuring special wave dispersion properties to facilitate effective wave collection for second higher harmonic through a graded array of resonators attached to an elastic plate, showcasing the improvement of sensitivity in detecting cracks. The amalgamation of resonance and spatial grading within surface arrays of structures enable meta-units to demonstrate broadband wave trapping, resulting in substantial amplification of out-of-plane displacement within the host plate medium at resonator positions, where the second higher harmonic component accumulates. Harnessing the interplay of these effects—deceleration in the resonators and amplification in the host beam—the numerical findings demonstrate that, given a sufficiently prolonged excitation time, the elastic ME can amplify the faint magnitude of the second higher harmonic produced by fatigue cracks within the host plate structure. The paper concludes with a summary, concluding remarks, and recommendations for future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴小利关注了科研通微信公众号
刚刚
ASUKA完成签到,获得积分10
1秒前
宫宛儿完成签到,获得积分10
1秒前
1秒前
上官若男应助认真的诗云采纳,获得10
1秒前
2秒前
池鱼完成签到,获得积分10
2秒前
小陈完成签到,获得积分20
2秒前
2秒前
sunrase完成签到,获得积分10
3秒前
乐呵呵发布了新的文献求助10
3秒前
f冯完成签到,获得积分10
3秒前
4秒前
peach完成签到,获得积分20
4秒前
李健的粉丝团团长应助apt采纳,获得10
4秒前
4秒前
打打应助王松桐采纳,获得10
6秒前
Longer完成签到,获得积分10
7秒前
人人人完成签到,获得积分10
7秒前
7秒前
募股小发布了新的文献求助10
8秒前
明亮的冷雪完成签到,获得积分10
8秒前
可耐的迎丝关注了科研通微信公众号
8秒前
pc完成签到,获得积分10
8秒前
8秒前
8秒前
崔昕雨发布了新的文献求助10
9秒前
寒冷的煜祺完成签到,获得积分10
9秒前
9秒前
郭禹霄完成签到,获得积分10
9秒前
ChinaOX完成签到,获得积分10
10秒前
10秒前
单薄的沛槐完成签到,获得积分10
10秒前
共享精神应助guozizi采纳,获得10
10秒前
chuzihang完成签到 ,获得积分10
11秒前
12秒前
potatozhou完成签到,获得积分10
13秒前
水濑心源完成签到,获得积分10
13秒前
qiongqiong完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4571570
求助须知:如何正确求助?哪些是违规求助? 3992686
关于积分的说明 12358989
捐赠科研通 3665670
什么是DOI,文献DOI怎么找? 2020248
邀请新用户注册赠送积分活动 1054513
科研通“疑难数据库(出版商)”最低求助积分说明 942077