Amplifying Nonlinear Ultrasonic Signatures for Fatigue Damage Detection Via a Graded Elastic Meta-Enhancer

超声波传感器 非线性系统 材料科学 声学 增强子 计算机科学 复合材料 物理 化学 生物化学 基因表达 量子力学 基因
作者
Yiran Tian,Haoyu Fu,Yanfeng Shen
标识
DOI:10.1115/qnde2024-135199
摘要

Abstract Fatigue cracks pose a significant threat to engineering structures owing to their inconspicuous nature and difficulty in detection. However, for the nascent stage of fatigue crack growth, the nonlinear attributes are faint and challenging to discern and characterize, thereby compromising the practical effectiveness of the detection methodology. Consequently, the amplification of these subtle nonlinear features becomes imperative to improve the detection efficiency. In recent developments, elastic metamaterials, comprising artificially engineered structures, have demonstrated considerable potential in controlling wave modes and frequencies. Leveraging the metamaterial concept, this paper proposes an elastic meta-enhancer (ME), featuring special wave dispersion properties to facilitate effective wave collection for second higher harmonic through a graded array of resonators attached to an elastic plate, showcasing the improvement of sensitivity in detecting cracks. The amalgamation of resonance and spatial grading within surface arrays of structures enable meta-units to demonstrate broadband wave trapping, resulting in substantial amplification of out-of-plane displacement within the host plate medium at resonator positions, where the second higher harmonic component accumulates. Harnessing the interplay of these effects—deceleration in the resonators and amplification in the host beam—the numerical findings demonstrate that, given a sufficiently prolonged excitation time, the elastic ME can amplify the faint magnitude of the second higher harmonic produced by fatigue cracks within the host plate structure. The paper concludes with a summary, concluding remarks, and recommendations for future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
小石头发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
baobaonaixi完成签到,获得积分10
2秒前
3秒前
标致的梦曼完成签到 ,获得积分10
3秒前
xh发布了新的文献求助10
3秒前
camera发布了新的文献求助10
3秒前
我是老大应助hydrazine采纳,获得10
4秒前
可爱的函函应助大饼采纳,获得10
4秒前
完美如花完成签到,获得积分20
6秒前
梵樱发布了新的文献求助10
6秒前
爆米花应助潇洒的盼烟采纳,获得10
6秒前
陶醉的钢笔完成签到 ,获得积分10
6秒前
7秒前
领导范儿应助Liangyu采纳,获得30
7秒前
jennie发布了新的文献求助30
8秒前
小石头完成签到,获得积分10
8秒前
科研通AI5应助甜蜜的觅露采纳,获得10
8秒前
9秒前
9秒前
xh完成签到,获得积分10
9秒前
sunglow11完成签到,获得积分0
9秒前
赘婿应助完美如花采纳,获得10
10秒前
liu完成签到,获得积分10
10秒前
顾矜应助难过小懒虫采纳,获得10
12秒前
chao Liu完成签到 ,获得积分0
12秒前
科研通AI5应助xlp采纳,获得10
13秒前
小林完成签到,获得积分10
14秒前
14秒前
标致的梦曼关注了科研通微信公众号
14秒前
酷波er应助wil采纳,获得10
14秒前
科研小呆瓜完成签到,获得积分10
15秒前
iNk应助纪清月采纳,获得20
15秒前
SciGPT应助追寻发夹采纳,获得10
15秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774229
求助须知:如何正确求助?哪些是违规求助? 3319961
关于积分的说明 10197633
捐赠科研通 3034461
什么是DOI,文献DOI怎么找? 1665041
邀请新用户注册赠送积分活动 796603
科研通“疑难数据库(出版商)”最低求助积分说明 757510