Identification Analysis of Angelicae sinensis radix and Angelicae pubescentis radix Based on Quantized “Digital Identity” and UHPLC-QTOF-MSE Analysis

根(腹足类) 鉴定(生物学) 混乱 身份(音乐) 匹配(统计) 计算机科学 化学 模式识别(心理学) 数学 人工智能 统计 心理学 植物 生物 声学 物理 精神分析
作者
Xian rui Wang,Jia ting Zhang,Fangliang He,Rao Fu,Wen guang Jing,Xiaohan Guo,Minghua Li,Xian long Cheng,Feng Wei
出处
期刊:Journal of the American Society for Mass Spectrometry [American Chemical Society]
卷期号:35 (9): 2222-2229 被引量:1
标识
DOI:10.1021/jasms.4c00254
摘要

Angelicae sinensis radix (ASR) and Angelicae pubescentis radix (APR), as traditional herbal medicines, are often confused and doped in the material market. However, the traditional identification method is to characterize the whole herb with a single or a few components, which do not have representation and cannot realize the effective utilization of unknown components. Consequently, the result is not convincing. In addition, the whole process is time-consuming and labor-intensive. To avoid the confusion and adulteration of ASR and APR as well as to strengthen quality control and improve identification efficiency, in this study, a UHPLC-QTOF-MSE method was used to analyze ASR and APR. Based on digital representation, the shared data with high ionic strength were extracted from different batches of the same herbal medicine as their "digital identity". Further, the above "digital identity" was used as the benchmark for matching and identifying unknown samples to feedback on matching credibility (MC). The results showed that based on the "digital identities" of ASR and APR, the digital identification of two herbal samples can be realized efficiently and accurately at the individual level. And the matching credibility (MC) was higher than 94.00%, even if only 1% of APR or ASR in the mixed samples can still be identified efficiently and accurately. The study is of great practical significance for improving the efficiency of the identification of ASR and APR, cracking down on adulterated and counterfeit drugs, and strengthening the quality control of ASR and APR. In addition, it has important reference significance for developing nontargeted digital identification of herbal medicines at the individual level based on UHPLC-QTOF-MSE and "digital identity", which is beneficial to the construction of digital Chinese medicine and digital quality control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
刚刚
劲秉应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
山花浪漫应助科研通管家采纳,获得20
刚刚
Akim应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
劲秉应助科研通管家采纳,获得10
1秒前
图图应助科研通管家采纳,获得60
1秒前
pluto应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
图图应助科研通管家采纳,获得100
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
2秒前
科研通AI5应助又又采纳,获得10
2秒前
晓薇发布了新的文献求助10
4秒前
忧心的香之完成签到,获得积分10
4秒前
4秒前
和谐的饼干完成签到,获得积分10
5秒前
笑的得美完成签到,获得积分10
5秒前
Ning00000完成签到 ,获得积分10
6秒前
咎星完成签到,获得积分10
6秒前
6秒前
科研通AI5应助芒果与鱼采纳,获得10
8秒前
欢喜的天空完成签到,获得积分20
10秒前
打打应助旺旺碎冰冰采纳,获得10
10秒前
潇潇发布了新的文献求助10
13秒前
14秒前
贲半梦完成签到,获得积分10
14秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737690
求助须知:如何正确求助?哪些是违规求助? 3281323
关于积分的说明 10024607
捐赠科研通 2998066
什么是DOI,文献DOI怎么找? 1645021
邀请新用户注册赠送积分活动 782472
科研通“疑难数据库(出版商)”最低求助积分说明 749814