Diagnostic value of artificial intelligence-assisted CTA for the assessment of atherosclerosis plaque: a systematic review and meta-analysis

医学 荟萃分析 接收机工作特性 置信区间 系统回顾 狭窄 科克伦图书馆 放射科 诊断准确性 易损斑块 梅德林 人工智能 内科学 计算机科学 政治学 法学
作者
Pingping Jie,Min Fan,Haiyi Zhang,O. Wang,Jun Lv,Yingchun Liu,Chunyin Zhang,Yong Liu,Jie Zhao
出处
期刊:Frontiers in Cardiovascular Medicine [Frontiers Media SA]
卷期号:11
标识
DOI:10.3389/fcvm.2024.1398963
摘要

Background Artificial intelligence (AI) has increasingly been applied to computed tomography angiography (CTA) images to aid in the assessment of atherosclerotic plaque. Our aim was to explore the diagnostic accuracy of AI-assisted CTA for plaque diagnosis and classification through a systematic review and meta-analysis. Methods A systematic literature review was performed by searching PubMed, EMBASE, and the Cochrane Library according to PRISMA guidelines. Original studies evaluating the diagnostic accuracy of radiomics, machine-learning, or deep-learning techniques applied to CTA images for detecting stenosis, calcification, or plaque vulnerability were included. The quality and risk of bias of the included studies were evaluated using the QUADAS-2 tool. The meta-analysis was conducted using STATA software (version 17.0) to pool sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) to determine the overall diagnostic performance. Results A total of 11 studies comprising 1,484 patients were included. There was low risk of bias and substantial heterogeneity. The overall pooled AUROC for atherosclerotic plaque assessment was 0.96 [95% confidence interval (CI) 0.94–0.97] across 21 trials. Of these, for ≥50% stenosis detection, the AUROC was 0.95 (95% CI 0.93–0.96) in five studies. For identifying ≥70% stenosis, the AUROC was 0.96 (95% CI 0.94–0.97) in six studies. For calcium detection, the AUROC was 0.92 (95% CI 0.90–0.94) in six studies. Conclusion Our meta-analysis demonstrates that AI-assisted CTA has high diagnostic accuracy for detecting stenosis and characterizing plaque composition, with optimal performance in detecting ≥70% stenosis. Systematic Review Registration https://www.crd.york.ac.uk/ , PROSPERO, identifier (CRD42023431410).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助快乐小狗采纳,获得10
刚刚
梦里发布了新的文献求助20
刚刚
1秒前
YUJIEYA发布了新的文献求助10
2秒前
在险峰完成签到 ,获得积分10
3秒前
3秒前
lila发布了新的文献求助10
4秒前
5秒前
7秒前
7秒前
tracywan完成签到,获得积分10
8秒前
小蘑菇应助33采纳,获得10
8秒前
谷高高发布了新的文献求助30
8秒前
彭于晏应助言叶采纳,获得10
8秒前
9秒前
Polymer72应助iris采纳,获得10
9秒前
桐桐应助汎影采纳,获得10
10秒前
LShi完成签到,获得积分10
10秒前
南风应助Nes采纳,获得10
12秒前
tracywan发布了新的文献求助10
12秒前
13秒前
李爱国应助sxd采纳,获得10
13秒前
赘婿应助哈哈哈哈哈采纳,获得10
13秒前
Caesar发布了新的文献求助10
14秒前
顾矜应助lila采纳,获得10
14秒前
15秒前
DARKNESS完成签到,获得积分10
15秒前
华仔应助科研通管家采纳,获得10
17秒前
今后应助科研通管家采纳,获得10
17秒前
Akim应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
17秒前
orixero应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
Yifan2024应助科研通管家采纳,获得10
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
Rita应助科研通管家采纳,获得10
18秒前
Yifan2024应助科研通管家采纳,获得30
18秒前
18秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
Toward personalized care for insomnia in the US Army: a machine learning model to predict response to cognitive behavioral therapy for insomnia 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3392136
求助须知:如何正确求助?哪些是违规求助? 3002953
关于积分的说明 8806661
捐赠科研通 2689710
什么是DOI,文献DOI怎么找? 1473217
科研通“疑难数据库(出版商)”最低求助积分说明 681447
邀请新用户注册赠送积分活动 674301