管周毛细血管
生物
糖酵解
细胞生物学
稀薄(生态学)
内科学
肾
医学
新陈代谢
生态学
物种多样性
作者
Yujie Huang,Ansheng Cong,Jinjin Li,Zhanmei Zhou,Hongsheng Zhou,Cailing Su,Zuoyu Hu,Fan Fan Hou,Wei Cao
出处
期刊:Journal of The American Society of Nephrology
日期:2024-09-03
标识
DOI:10.1681/asn.0000000000000488
摘要
Key Points Peritubular endothelial cells have a hypoglycolytic metabolism in CKD. Restoration of glycolysis in CKD peritubular endothelial cells by overexpressing 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase attenuates microvascular rarefaction and kidney fibrosis. Strategies targeting the metabolic defect in glycolysis in peritubular endothelial cells may be effective in the treatment of CKD. Background Peritubular endothelial cell dropout leading to microvascular rarefaction is a common manifestation of CKD. The role of metabolism reprogramming in peritubular endothelial cell loss in CKD is undetermined. Methods Single-cell sequencing and metabolic analysis were used to characterize the metabolic profile of peritubular endothelial cells from patients with CKD and from CKD mouse models. In vivo and in vitro models demonstrated metabolic reprogramming in peritubular endothelial cells in conditions of CKD and its contribution to microvascular rarefaction. Results In this study, we identified glycolysis as a top dysregulated metabolic pathway in peritubular endothelial cells from patients with CKD. Specifically, CKD peritubular endothelial cells were hypoglycolytic while displaying an antiangiogenic response with decreased proliferation and increased apoptosis. The hypoglycolytic phenotype of peritubular endothelial cells was recapitulated in CKD mouse models and in peritubular endothelial cells stimulated by hydrogen peroxide. Mechanically, oxidative stress, through activating a redox sensor kruppel-like transcription factor 9, downregulated the glycolytic activator 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase expression, thereby reprogramming peritubular endothelial cells toward a hypoglycolytic phenotype. 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase overexpression in peritubular endothelial cells restored hydrogen peroxide–induced reduction in glycolysis and cellular ATP levels and enhanced the G1/S cell cycle transition, enabling peritubular endothelial cells to improve proliferation and reduce apoptosis. Consistently, restoration of peritubular endothelial cell glycolysis in CKD mice, by overexpressing endothelial Pfkfb3, reversed the antiangiogenic response in peritubular endothelial cells and protected the kidney from microvascular rarefaction and fibrosis. By contrast, suppression of glycolysis by endothelial Pfkfb3 deletion exacerbated microvascular rarefaction and fibrosis in CKD mice. Conclusions Our study revealed a disrupted regulation of glycolysis in peritubular endothelial cells as an initiator of microvascular rarefaction in CKD. Restoration of peritubular endothelial cell glycolysis in CKD kidney improved microvascular rarefaction and ameliorated fibrotic lesions.
科研通智能强力驱动
Strongly Powered by AbleSci AI