Deciphering Dormant Cells of Lung Adenocarcinoma: Prognostic Insights from O-glycosylation-Related Tumor Dormancy Genes Using Machine Learning

休眠 生物 糖基化 腺癌 癌症研究 肺癌 基因 生物信息学 癌症 细胞生物学 内科学 遗传学 医学 植物 发芽
作者
Chenfei Dong,Liu Yang,Suli Chong,Jiayue Zeng,Ziming Bian,Xiaoming Chen,Sairong Fan
出处
期刊:International Journal of Molecular Sciences [Multidisciplinary Digital Publishing Institute]
卷期号:25 (17): 9502-9502
标识
DOI:10.3390/ijms25179502
摘要

Lung adenocarcinoma (LUAD) poses significant challenges due to its complex biological characteristics and high recurrence rate. The high recurrence rate of LUAD is closely associated with cellular dormancy, which enhances resistance to chemotherapy and evasion of immune cell destruction. Using single-cell RNA sequencing (scRNA-seq) data from LUAD patients, we categorized the cells into two subclusters: dormant and active cells. Utilizing high-density Weighted Gene Co-expression Network Analysis (hdWGCNA) and pseudo-time cell trajectory, aberrant expression of genes involved in protein O-glycosylation was detected in dormant cells, suggesting a crucial role for O-glycosylation in maintaining the dormant state. Intercellular communication analysis highlighted the interaction between fibroblasts and dormant cells, where the Insulin-like Growth Factor (IGF) signaling pathway regulated by O-glycosylation was crucial. By employing Gene Set Variation Analysis (GSVA) and machine learning, a risk score model was developed using hub genes, which showed high accuracy in determining LUAD prognosis. The model also demonstrated robust performance on the training dataset and excellent predictive capability, providing a reliable basis for predicting patient clinical outcomes. The group with a higher risk score exhibited a propensity for adverse outcomes in the tumor microenvironment (TME) and tumor mutational burden (TMB). Additionally, the 50% inhibitory concentration (IC50) values for chemotherapy exhibited significant variations among the different risk groups. In vitro experiments demonstrated that EFNB2, PTTG1IP, and TNFRSF11A were upregulated in dormant tumor cells, which also contributed greatly to the diagnosis of LUAD. In conclusion, this study highlighted the crucial role of O-glycosylation in the dormancy state of LUAD tumors and developed a predictive model for the prognosis of LUAD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ss完成签到,获得积分10
1秒前
2秒前
3秒前
雪白傲薇发布了新的文献求助50
3秒前
mx关闭了mx文献求助
3秒前
月青悠完成签到,获得积分10
4秒前
科研白菜白完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
6秒前
赘婿应助lt采纳,获得10
7秒前
7秒前
8秒前
漂亮之桃发布了新的文献求助10
8秒前
羔羊完成签到,获得积分10
8秒前
9秒前
禹无极发布了新的文献求助10
9秒前
10秒前
小叶子完成签到,获得积分20
10秒前
10秒前
10秒前
李木子hust完成签到,获得积分10
11秒前
烟花应助Zero_采纳,获得10
11秒前
天天快乐应助哈哈恬采纳,获得10
11秒前
11秒前
11秒前
白桃乌龙发布了新的文献求助10
12秒前
包子发布了新的文献求助10
12秒前
12秒前
出门右转完成签到,获得积分10
12秒前
Echo发布了新的文献求助10
12秒前
13秒前
王王发布了新的文献求助10
13秒前
可爱的函函应助白椋采纳,获得10
13秒前
飞云发布了新的文献求助10
14秒前
14秒前
mxq完成签到,获得积分10
15秒前
万能图书馆应助Carlo采纳,获得10
15秒前
小叶子发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958693
求助须知:如何正确求助?哪些是违规求助? 3504939
关于积分的说明 11121216
捐赠科研通 3236311
什么是DOI,文献DOI怎么找? 1788726
邀请新用户注册赠送积分活动 871307
科研通“疑难数据库(出版商)”最低求助积分说明 802691