Simulated LC–MS Data Set for Assessing the Metabolomics Data Processing Pipeline Implemented into MVAPACK

化学 代谢组学 管道(软件) 数据集 色谱法 集合(抽象数据类型) 数据处理 人工智能 数据库 计算机科学 程序设计语言
作者
Christopher P. Jurich,Micah J. Jeppesen,Isin T. Sakallioglu,Aline de Lima Leite,Joseph D. Yesselman,Robert Powers
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (32): 12943-12956
标识
DOI:10.1021/acs.analchem.3c04979
摘要

Metabolomics commonly relies on using one-dimensional (1D) 1H NMR spectroscopy or liquid chromatography–mass spectrometry (LC–MS) to derive scientific insights from large collections of biological samples. NMR and MS approaches to metabolomics require, among other issues, a data processing pipeline. Quantitative assessment of the performance of these software platforms is challenged by a lack of standardized data sets with "known" outcomes. To resolve this issue, we created a novel simulated LC–MS data set with known peak locations and intensities, defined metabolite differences between groups (i.e., fold change > 2, coefficient of variation ≤ 25%), and different amounts of added Gaussian noise (0, 5, or 10%) and missing features (0, 10, or 20%). This data set was developed to improve benchmarking of existing LC–MS metabolomics software and to validate the updated version of our MVAPACK software, which added gas chromatography–MS and LC–MS functionality to its existing 1D and two-dimensional NMR data processing capabilities. We also included two experimental LC–MS data sets acquired from a standard mixture andMycobacterium smegmatiscell lysates since a simulated data set alone may not capture all the unique characteristics and variability of real spectra needed to assess software performance properly. Our simulated and experimental LC–MS data sets were processed with the MS-DIAL and XCMSOnline software packages and our MVAPACK toolkit to showcase the utility of our data sets to benchmark MVAPACK against community standards. Our results demonstrate the enhanced objectivity and clarity of software assessment that can be achieved when both simulated and experimental data are employed since distinctly different software performances were observed with the simulated and experimental LC–MS data sets. We also demonstrate that the performance of MVAPACK is equivalent to or exceeds existing LC–MS software programs while providing a single platform for processing and analyzing both NMR and MS data sets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
歪歪扣叉给歪歪扣叉的求助进行了留言
3秒前
1571424272完成签到,获得积分10
5秒前
5秒前
LTDJYYD完成签到,获得积分10
5秒前
Alice完成签到,获得积分10
5秒前
科研通AI6应助艳艳子采纳,获得10
6秒前
朱光辉发布了新的文献求助10
6秒前
7秒前
1_1完成签到,获得积分10
7秒前
柘苓完成签到 ,获得积分10
8秒前
WZzz完成签到 ,获得积分10
9秒前
可爱的函函应助老实善愁采纳,获得10
9秒前
冷知识发布了新的文献求助50
11秒前
JZW发布了新的文献求助10
11秒前
12秒前
花花完成签到,获得积分10
14秒前
东晓完成签到,获得积分10
16秒前
16秒前
学学学完成签到 ,获得积分10
16秒前
李欣完成签到,获得积分10
16秒前
Arthur完成签到,获得积分10
17秒前
17秒前
lgj666发布了新的文献求助10
19秒前
开心完成签到 ,获得积分10
19秒前
21秒前
小齐爱科研完成签到,获得积分10
21秒前
22秒前
22秒前
25秒前
量子星尘发布了新的文献求助10
25秒前
romy完成签到,获得积分10
26秒前
友芸完成签到 ,获得积分10
26秒前
shanshan完成签到 ,获得积分10
27秒前
李欣发布了新的文献求助10
27秒前
dasheng_发布了新的文献求助10
28秒前
28秒前
Rimbaud完成签到 ,获得积分10
28秒前
丰富的含巧完成签到,获得积分10
29秒前
安详的御姐完成签到,获得积分10
29秒前
Ping发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539728
求助须知:如何正确求助?哪些是违规求助? 4626494
关于积分的说明 14599495
捐赠科研通 4567353
什么是DOI,文献DOI怎么找? 2504016
邀请新用户注册赠送积分活动 1481719
关于科研通互助平台的介绍 1453352