Simulated LC–MS Data Set for Assessing the Metabolomics Data Processing Pipeline Implemented into MVAPACK

化学 代谢组学 管道(软件) 数据集 色谱法 集合(抽象数据类型) 数据处理 人工智能 数据库 计算机科学 程序设计语言
作者
Christopher P. Jurich,Micah J. Jeppesen,Isin T. Sakallioglu,Aline de Lima Leite,Joseph D. Yesselman,Robert Powers
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:96 (32): 12943-12956
标识
DOI:10.1021/acs.analchem.3c04979
摘要

Metabolomics commonly relies on using one-dimensional (1D) 1H NMR spectroscopy or liquid chromatography–mass spectrometry (LC–MS) to derive scientific insights from large collections of biological samples. NMR and MS approaches to metabolomics require, among other issues, a data processing pipeline. Quantitative assessment of the performance of these software platforms is challenged by a lack of standardized data sets with "known" outcomes. To resolve this issue, we created a novel simulated LC–MS data set with known peak locations and intensities, defined metabolite differences between groups (i.e., fold change > 2, coefficient of variation ≤ 25%), and different amounts of added Gaussian noise (0, 5, or 10%) and missing features (0, 10, or 20%). This data set was developed to improve benchmarking of existing LC–MS metabolomics software and to validate the updated version of our MVAPACK software, which added gas chromatography–MS and LC–MS functionality to its existing 1D and two-dimensional NMR data processing capabilities. We also included two experimental LC–MS data sets acquired from a standard mixture andMycobacterium smegmatiscell lysates since a simulated data set alone may not capture all the unique characteristics and variability of real spectra needed to assess software performance properly. Our simulated and experimental LC–MS data sets were processed with the MS-DIAL and XCMSOnline software packages and our MVAPACK toolkit to showcase the utility of our data sets to benchmark MVAPACK against community standards. Our results demonstrate the enhanced objectivity and clarity of software assessment that can be achieved when both simulated and experimental data are employed since distinctly different software performances were observed with the simulated and experimental LC–MS data sets. We also demonstrate that the performance of MVAPACK is equivalent to or exceeds existing LC–MS software programs while providing a single platform for processing and analyzing both NMR and MS data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wang关注了科研通微信公众号
1秒前
Rqbnicsp完成签到,获得积分10
1秒前
3秒前
INKMAN完成签到,获得积分10
3秒前
4秒前
若水应助九九采纳,获得10
5秒前
伯赏笑白发布了新的文献求助10
5秒前
6秒前
xxxx发布了新的文献求助10
6秒前
小二郎应助幸福的乐巧采纳,获得10
6秒前
haha发布了新的文献求助10
10秒前
11秒前
11秒前
13秒前
今后应助强doig采纳,获得30
14秒前
orixero应助qinsu采纳,获得10
14秒前
14秒前
15秒前
17秒前
隐形曼青应助haha采纳,获得10
18秒前
皮皮球完成签到 ,获得积分10
19秒前
21秒前
李爱国应助科研通管家采纳,获得30
22秒前
22秒前
张啦啦应助科研通管家采纳,获得10
22秒前
小二郎应助科研通管家采纳,获得10
22秒前
SciGPT应助科研通管家采纳,获得10
22秒前
香蕉觅云应助科研通管家采纳,获得10
22秒前
达达完成签到,获得积分10
22秒前
cctv18应助科研通管家采纳,获得10
22秒前
cctv18应助科研通管家采纳,获得10
22秒前
cctv18应助科研通管家采纳,获得10
22秒前
cctv18应助科研通管家采纳,获得10
22秒前
小二郎应助科研通管家采纳,获得10
22秒前
李健应助科研通管家采纳,获得10
22秒前
大模型应助科研通管家采纳,获得10
22秒前
cctv18应助科研通管家采纳,获得10
22秒前
小蘑菇应助Zoeyz采纳,获得10
23秒前
Ganlou应助young_joint采纳,获得10
23秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330178
求助须知:如何正确求助?哪些是违规求助? 2959781
关于积分的说明 8596907
捐赠科研通 2638194
什么是DOI,文献DOI怎么找? 1444196
科研通“疑难数据库(出版商)”最低求助积分说明 669063
邀请新用户注册赠送积分活动 656596