Research on variety identification of common bean seeds based on hyperspectral and deep learning

化学 高光谱成像 鉴定(生物学) 多样性(控制论) 人工智能 植物 生物 计算机科学
作者
Shujia Li,Laijun Sun,Xiuliang Jin,Guojun Feng,Lingyu Zhang,Hongyi Bai,Ziyue Wang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:326: 125212-125212
标识
DOI:10.1016/j.saa.2024.125212
摘要

Accurate, fast and non-destructive identification of varieties of common bean seeds is important for the cultivation and efficient utilization of common beans. This study is based on hyperspectral and deep learning to identify the varieties of common bean seeds non-destructively. In this study, the average spectrum of 3078 hyperspectral images from 500 varieties was obtained after image segmentation and sensitive region extraction, and the Synthetic Minority Over-sampling Technique (SMOTE) was used to achieve the equilibrium of the samples of various varieties. A one-dimensional convolutional neural network model (IResCNN) incorporating Inception module and residual structure was proposed to identify seed varieties, and Support Vector Machine (SVM), K-Nearest Neighbor (KNN), VGG19, AlexNet, ResNet50 were established to compare the identification effect. After analyzing the effects of multiple spectral preprocessing methods on the model, the study selected Savitzky-Golay smoothing correction (SG) for spectral preprocessing and extracted 66 characteristic wavelengths using Successive Projections Algorithm (SPA) as inputs to the discriminative model. Ultimately, the IResCNN model achieved the highest accuracy of 93.06 % on the test set, indicating that hyperspectral technology can accurately identify bean varieties, and the study provides a correct method of thinking for the non-destructive classification of multi-species small-sample bean varieties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Leorihy19完成签到,获得积分10
3秒前
小萝卜发布了新的文献求助10
3秒前
隐形曼青应助微弱de胖头采纳,获得10
3秒前
3秒前
善学以致用应助Xxx采纳,获得10
4秒前
Sky发布了新的文献求助10
6秒前
伊人心轩发布了新的文献求助10
6秒前
6秒前
积极慕梅应助yxkooo采纳,获得20
8秒前
laity完成签到 ,获得积分10
9秒前
阿军完成签到,获得积分10
9秒前
Sky完成签到,获得积分10
11秒前
12秒前
奇奇发布了新的文献求助10
13秒前
Hello应助天河老农民采纳,获得10
14秒前
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
今后应助科研通管家采纳,获得10
15秒前
Owen应助科研通管家采纳,获得10
15秒前
Lucas应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
17秒前
leyellows发布了新的文献求助20
17秒前
YOLO发布了新的文献求助10
17秒前
20秒前
20秒前
22秒前
22秒前
22秒前
内向小熊猫完成签到,获得积分10
23秒前
24秒前
24秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157298
求助须知:如何正确求助?哪些是违规求助? 2808647
关于积分的说明 7878088
捐赠科研通 2467070
什么是DOI,文献DOI怎么找? 1313183
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919