亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reinforcement Learning Approaches for the Orienteering Problem with Stochastic and Dynamic Release Dates

定向运动 强化学习 钢筋 计算机科学 运筹学 数学优化 人工智能 工程类 数学 结构工程
作者
Yuanyuan Li,Claudia Archetti,Ivana Ljubić
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:58 (5): 1143-1165 被引量:3
标识
DOI:10.1287/trsc.2022.0366
摘要

In this paper, we study a sequential decision-making problem faced by e-commerce carriers related to when to send out a vehicle from the central depot to serve customer requests and in which order to provide the service, under the assumption that the time at which parcels arrive at the depot is stochastic and dynamic. The objective is to maximize the expected number of parcels that can be delivered during service hours. We propose two reinforcement learning (RL) approaches for solving this problem. These approaches rely on a look-ahead strategy in which future release dates are sampled in a Monte Carlo fashion, and a batch approach is used to approximate future routes. Both RL approaches are based on value function approximation: One combines it with a consensus function (VFA-CF) and the other one with a two-stage stochastic integer linear programming model (VFA-2S). VFA-CF and VFA-2S do not need extensive training as they are based on very few hyperparameters and make good use of integer linear programming (ILP) and branch-and-cut–based exact methods to improve the quality of decisions. We also establish sufficient conditions for partial characterization of optimal policy and integrate them into VFA-CF/VFA-2S. In an empirical study, we conduct a competitive analysis using upper bounds with perfect information. We also show that VFA-CF and VFA-2S greatly outperform alternative approaches that (1) do not rely on future information (2) are based on point estimation of future information, (3) use heuristics rather than exact methods, or (4) use exact evaluations of future rewards. Funding: This work was supported by the CY Initiative of Excellence [ANR-16- IDEX-0008]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/trsc.2022.0366 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
28秒前
完美世界应助科研通管家采纳,获得10
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
完美世界应助科研通管家采纳,获得10
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
科研通AI6应助科研通管家采纳,获得10
28秒前
29秒前
34秒前
willlee完成签到 ,获得积分10
35秒前
35秒前
LIJinlin完成签到,获得积分10
36秒前
雪白傲薇完成签到 ,获得积分10
39秒前
LIJinlin发布了新的文献求助10
39秒前
扯扯完成签到,获得积分20
49秒前
53秒前
讨厌水煮蛋完成签到,获得积分10
53秒前
59秒前
1分钟前
扯扯发布了新的文献求助10
1分钟前
liuliu发布了新的文献求助10
1分钟前
讨厌水煮蛋发布了新的文献求助100
1分钟前
555完成签到,获得积分10
1分钟前
1分钟前
sera发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
老不靠谱发布了新的文献求助10
1分钟前
刘大宝发布了新的文献求助10
1分钟前
缪忆寒完成签到,获得积分10
1分钟前
充电宝应助刘大宝采纳,获得10
1分钟前
lovelife完成签到,获得积分10
1分钟前
sera完成签到 ,获得积分10
1分钟前
刘大宝完成签到,获得积分20
2分钟前
城。完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
yangzai完成签到 ,获得积分10
3分钟前
CJH104完成签到 ,获得积分10
3分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772837
求助须知:如何正确求助?哪些是违规求助? 5603302
关于积分的说明 15430141
捐赠科研通 4905627
什么是DOI,文献DOI怎么找? 2639601
邀请新用户注册赠送积分活动 1587507
关于科研通互助平台的介绍 1542432