亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reinforcement Learning Approaches for the Orienteering Problem with Stochastic and Dynamic Release Dates

定向运动 强化学习 钢筋 计算机科学 运筹学 数学优化 人工智能 工程类 数学 结构工程
作者
Yuanyuan Li,Claudia Archetti,Ivana Ljubić
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:58 (5): 1143-1165 被引量:3
标识
DOI:10.1287/trsc.2022.0366
摘要

In this paper, we study a sequential decision-making problem faced by e-commerce carriers related to when to send out a vehicle from the central depot to serve customer requests and in which order to provide the service, under the assumption that the time at which parcels arrive at the depot is stochastic and dynamic. The objective is to maximize the expected number of parcels that can be delivered during service hours. We propose two reinforcement learning (RL) approaches for solving this problem. These approaches rely on a look-ahead strategy in which future release dates are sampled in a Monte Carlo fashion, and a batch approach is used to approximate future routes. Both RL approaches are based on value function approximation: One combines it with a consensus function (VFA-CF) and the other one with a two-stage stochastic integer linear programming model (VFA-2S). VFA-CF and VFA-2S do not need extensive training as they are based on very few hyperparameters and make good use of integer linear programming (ILP) and branch-and-cut–based exact methods to improve the quality of decisions. We also establish sufficient conditions for partial characterization of optimal policy and integrate them into VFA-CF/VFA-2S. In an empirical study, we conduct a competitive analysis using upper bounds with perfect information. We also show that VFA-CF and VFA-2S greatly outperform alternative approaches that (1) do not rely on future information (2) are based on point estimation of future information, (3) use heuristics rather than exact methods, or (4) use exact evaluations of future rewards. Funding: This work was supported by the CY Initiative of Excellence [ANR-16- IDEX-0008]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/trsc.2022.0366 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
5秒前
7秒前
12秒前
13秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
爆米花应助郭也采纳,获得10
18秒前
安详烤鸡发布了新的文献求助10
19秒前
废寝忘食完成签到,获得积分10
19秒前
废寝忘食发布了新的文献求助10
22秒前
26秒前
Nini完成签到,获得积分10
30秒前
45秒前
zzzxh发布了新的文献求助10
49秒前
喜悦的小土豆完成签到 ,获得积分10
49秒前
无花果应助唠叨的秋蝶采纳,获得10
52秒前
zzzxh完成签到,获得积分10
57秒前
58秒前
1分钟前
caca完成签到,获得积分0
1分钟前
Leon完成签到 ,获得积分10
1分钟前
多喝水完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Ava应助Zola采纳,获得10
1分钟前
郭也发布了新的文献求助10
1分钟前
1分钟前
大模型应助琪琪采纳,获得10
1分钟前
顾矜应助柠檬黄采纳,获得20
1分钟前
风趣手链发布了新的文献求助10
1分钟前
zqq完成签到,获得积分0
2分钟前
2分钟前
柠檬黄发布了新的文献求助20
2分钟前
2分钟前
琪琪发布了新的文献求助10
2分钟前
blue完成签到 ,获得积分10
2分钟前
郭也完成签到,获得积分10
2分钟前
2分钟前
Zola发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432252
求助须知:如何正确求助?哪些是违规求助? 4544983
关于积分的说明 14194937
捐赠科研通 4464282
什么是DOI,文献DOI怎么找? 2447047
邀请新用户注册赠送积分活动 1438358
关于科研通互助平台的介绍 1415216