Reinforcement Learning Approaches for the Orienteering Problem with Stochastic and Dynamic Release Dates

定向运动 强化学习 钢筋 计算机科学 运筹学 数学优化 人工智能 工程类 数学 结构工程
作者
Yuanyuan Li,Claudia Archetti,Ivana Ljubić
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:58 (5): 1143-1165 被引量:3
标识
DOI:10.1287/trsc.2022.0366
摘要

In this paper, we study a sequential decision-making problem faced by e-commerce carriers related to when to send out a vehicle from the central depot to serve customer requests and in which order to provide the service, under the assumption that the time at which parcels arrive at the depot is stochastic and dynamic. The objective is to maximize the expected number of parcels that can be delivered during service hours. We propose two reinforcement learning (RL) approaches for solving this problem. These approaches rely on a look-ahead strategy in which future release dates are sampled in a Monte Carlo fashion, and a batch approach is used to approximate future routes. Both RL approaches are based on value function approximation: One combines it with a consensus function (VFA-CF) and the other one with a two-stage stochastic integer linear programming model (VFA-2S). VFA-CF and VFA-2S do not need extensive training as they are based on very few hyperparameters and make good use of integer linear programming (ILP) and branch-and-cut–based exact methods to improve the quality of decisions. We also establish sufficient conditions for partial characterization of optimal policy and integrate them into VFA-CF/VFA-2S. In an empirical study, we conduct a competitive analysis using upper bounds with perfect information. We also show that VFA-CF and VFA-2S greatly outperform alternative approaches that (1) do not rely on future information (2) are based on point estimation of future information, (3) use heuristics rather than exact methods, or (4) use exact evaluations of future rewards. Funding: This work was supported by the CY Initiative of Excellence [ANR-16- IDEX-0008]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/trsc.2022.0366 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
刘春燕完成签到,获得积分20
3秒前
无辜的鼠标完成签到,获得积分10
3秒前
等天黑完成签到,获得积分10
3秒前
斯文败类应助林狗采纳,获得10
4秒前
鹏程完成签到 ,获得积分10
4秒前
科研通AI2S应助林狗采纳,获得10
4秒前
慕青应助林狗采纳,获得10
4秒前
小二郎应助林狗采纳,获得10
4秒前
香蕉觅云应助林狗采纳,获得10
4秒前
桐桐应助林狗采纳,获得10
4秒前
orixero应助林狗采纳,获得10
4秒前
Hello应助林狗采纳,获得10
4秒前
星辰大海应助林狗采纳,获得10
4秒前
5秒前
黑白完成签到 ,获得积分10
6秒前
6秒前
7秒前
Hello应助XINWU采纳,获得10
8秒前
QDU应助如意伟诚采纳,获得20
9秒前
彭于晏应助lxz采纳,获得10
9秒前
10秒前
Ieklos完成签到,获得积分10
10秒前
nihao完成签到,获得积分20
10秒前
xx发布了新的文献求助10
10秒前
qqqq完成签到,获得积分10
11秒前
12秒前
爆米花应助屈春洋采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
圆锥香蕉应助科研通管家采纳,获得20
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
BowieHuang应助科研通管家采纳,获得10
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
14秒前
华仔应助科研通管家采纳,获得10
14秒前
李健应助科研通管家采纳,获得10
14秒前
曾无忧应助科研通管家采纳,获得10
15秒前
BowieHuang应助科研通管家采纳,获得10
15秒前
敬老院N号应助科研通管家采纳,获得30
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604302
求助须知:如何正确求助?哪些是违规求助? 4689045
关于积分的说明 14857600
捐赠科研通 4697314
什么是DOI,文献DOI怎么找? 2541233
邀请新用户注册赠送积分活动 1507355
关于科研通互助平台的介绍 1471867