亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reinforcement Learning Approaches for the Orienteering Problem with Stochastic and Dynamic Release Dates

定向运动 强化学习 钢筋 计算机科学 运筹学 数学优化 人工智能 工程类 数学 结构工程
作者
Yuanyuan Li,Claudia Archetti,Ivana Ljubić
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:58 (5): 1143-1165 被引量:3
标识
DOI:10.1287/trsc.2022.0366
摘要

In this paper, we study a sequential decision-making problem faced by e-commerce carriers related to when to send out a vehicle from the central depot to serve customer requests and in which order to provide the service, under the assumption that the time at which parcels arrive at the depot is stochastic and dynamic. The objective is to maximize the expected number of parcels that can be delivered during service hours. We propose two reinforcement learning (RL) approaches for solving this problem. These approaches rely on a look-ahead strategy in which future release dates are sampled in a Monte Carlo fashion, and a batch approach is used to approximate future routes. Both RL approaches are based on value function approximation: One combines it with a consensus function (VFA-CF) and the other one with a two-stage stochastic integer linear programming model (VFA-2S). VFA-CF and VFA-2S do not need extensive training as they are based on very few hyperparameters and make good use of integer linear programming (ILP) and branch-and-cut–based exact methods to improve the quality of decisions. We also establish sufficient conditions for partial characterization of optimal policy and integrate them into VFA-CF/VFA-2S. In an empirical study, we conduct a competitive analysis using upper bounds with perfect information. We also show that VFA-CF and VFA-2S greatly outperform alternative approaches that (1) do not rely on future information (2) are based on point estimation of future information, (3) use heuristics rather than exact methods, or (4) use exact evaluations of future rewards. Funding: This work was supported by the CY Initiative of Excellence [ANR-16- IDEX-0008]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/trsc.2022.0366 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
郑传伟完成签到 ,获得积分10
4秒前
5秒前
5秒前
7秒前
外向的砖家完成签到 ,获得积分10
9秒前
石濑汤汤发布了新的文献求助10
9秒前
10秒前
归尘发布了新的文献求助10
12秒前
12秒前
12秒前
竹筏过海应助(# ̄д ̄)采纳,获得50
13秒前
14秒前
文静的摩托完成签到,获得积分10
15秒前
雨乐发布了新的文献求助10
16秒前
20秒前
yyy发布了新的文献求助50
20秒前
科研通AI6应助琳666采纳,获得10
22秒前
光亮静槐完成签到 ,获得积分10
26秒前
LH完成签到,获得积分10
26秒前
万事胜意完成签到 ,获得积分10
32秒前
xzlijingjing完成签到 ,获得积分10
33秒前
34秒前
犹豫疾完成签到,获得积分10
35秒前
别斑秃了完成签到 ,获得积分10
40秒前
2116564发布了新的文献求助10
40秒前
重要的橘子完成签到 ,获得积分10
42秒前
zy发布了新的文献求助10
44秒前
Wzh发布了新的文献求助30
47秒前
共享精神应助2116564采纳,获得10
49秒前
和谐蛋蛋完成签到,获得积分10
50秒前
56秒前
尹恩惠完成签到,获得积分10
56秒前
59秒前
英姑应助zy采纳,获得10
59秒前
1分钟前
桐桐应助kk采纳,获得10
1分钟前
1分钟前
香香完成签到 ,获得积分20
1分钟前
1分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449646
求助须知:如何正确求助?哪些是违规求助? 4557736
关于积分的说明 14264851
捐赠科研通 4480885
什么是DOI,文献DOI怎么找? 2454582
邀请新用户注册赠送积分活动 1445382
关于科研通互助平台的介绍 1421096