已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Reinforcement Learning Approaches for the Orienteering Problem with Stochastic and Dynamic Release Dates

定向运动 强化学习 钢筋 计算机科学 运筹学 数学优化 人工智能 工程类 数学 结构工程
作者
Yuanyuan Li,Claudia Archetti,Ivana Ljubić
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:58 (5): 1143-1165 被引量:3
标识
DOI:10.1287/trsc.2022.0366
摘要

In this paper, we study a sequential decision-making problem faced by e-commerce carriers related to when to send out a vehicle from the central depot to serve customer requests and in which order to provide the service, under the assumption that the time at which parcels arrive at the depot is stochastic and dynamic. The objective is to maximize the expected number of parcels that can be delivered during service hours. We propose two reinforcement learning (RL) approaches for solving this problem. These approaches rely on a look-ahead strategy in which future release dates are sampled in a Monte Carlo fashion, and a batch approach is used to approximate future routes. Both RL approaches are based on value function approximation: One combines it with a consensus function (VFA-CF) and the other one with a two-stage stochastic integer linear programming model (VFA-2S). VFA-CF and VFA-2S do not need extensive training as they are based on very few hyperparameters and make good use of integer linear programming (ILP) and branch-and-cut–based exact methods to improve the quality of decisions. We also establish sufficient conditions for partial characterization of optimal policy and integrate them into VFA-CF/VFA-2S. In an empirical study, we conduct a competitive analysis using upper bounds with perfect information. We also show that VFA-CF and VFA-2S greatly outperform alternative approaches that (1) do not rely on future information (2) are based on point estimation of future information, (3) use heuristics rather than exact methods, or (4) use exact evaluations of future rewards. Funding: This work was supported by the CY Initiative of Excellence [ANR-16- IDEX-0008]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/trsc.2022.0366 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LX有理想完成签到 ,获得积分10
1秒前
璎丸子完成签到,获得积分10
3秒前
TTT完成签到,获得积分10
3秒前
wan12138发布了新的文献求助10
5秒前
6秒前
脑洞疼应助夏律采纳,获得10
6秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
刘佳慧完成签到,获得积分10
11秒前
absb驳回了田様应助
11秒前
上官若男应助材料生采纳,获得10
15秒前
17秒前
落尘发布了新的文献求助10
17秒前
18秒前
20秒前
pan完成签到,获得积分20
21秒前
夜话风陵杜完成签到 ,获得积分0
24秒前
pan发布了新的文献求助10
25秒前
小周发布了新的文献求助10
25秒前
27秒前
大方的怜寒完成签到 ,获得积分10
27秒前
bkagyin应助Kim采纳,获得10
30秒前
英俊的铭应助111采纳,获得10
30秒前
31秒前
啷个吃不饱完成签到 ,获得积分10
31秒前
慕青应助fxtx1234采纳,获得10
32秒前
材料生发布了新的文献求助10
33秒前
宣萱发布了新的文献求助10
33秒前
xinxin完成签到,获得积分10
34秒前
流萤发布了新的文献求助10
34秒前
听话的雨竹完成签到 ,获得积分10
35秒前
35秒前
ZXK完成签到 ,获得积分10
36秒前
36秒前
老大黎明发布了新的文献求助10
38秒前
absb发布了新的文献求助10
40秒前
英姑应助宝剑葫芦采纳,获得10
40秒前
龙虾发票完成签到,获得积分10
42秒前
111发布了新的文献求助10
44秒前
一杯茶具完成签到 ,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573236
求助须知:如何正确求助?哪些是违规求助? 4659412
关于积分的说明 14724454
捐赠科研通 4599168
什么是DOI,文献DOI怎么找? 2524154
邀请新用户注册赠送积分活动 1494679
关于科研通互助平台的介绍 1464704