亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reinforcement Learning Approaches for the Orienteering Problem with Stochastic and Dynamic Release Dates

定向运动 强化学习 钢筋 计算机科学 运筹学 数学优化 人工智能 工程类 数学 结构工程
作者
Yuanyuan Li,Claudia Archetti,Ivana Ljubić
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:58 (5): 1143-1165 被引量:3
标识
DOI:10.1287/trsc.2022.0366
摘要

In this paper, we study a sequential decision-making problem faced by e-commerce carriers related to when to send out a vehicle from the central depot to serve customer requests and in which order to provide the service, under the assumption that the time at which parcels arrive at the depot is stochastic and dynamic. The objective is to maximize the expected number of parcels that can be delivered during service hours. We propose two reinforcement learning (RL) approaches for solving this problem. These approaches rely on a look-ahead strategy in which future release dates are sampled in a Monte Carlo fashion, and a batch approach is used to approximate future routes. Both RL approaches are based on value function approximation: One combines it with a consensus function (VFA-CF) and the other one with a two-stage stochastic integer linear programming model (VFA-2S). VFA-CF and VFA-2S do not need extensive training as they are based on very few hyperparameters and make good use of integer linear programming (ILP) and branch-and-cut–based exact methods to improve the quality of decisions. We also establish sufficient conditions for partial characterization of optimal policy and integrate them into VFA-CF/VFA-2S. In an empirical study, we conduct a competitive analysis using upper bounds with perfect information. We also show that VFA-CF and VFA-2S greatly outperform alternative approaches that (1) do not rely on future information (2) are based on point estimation of future information, (3) use heuristics rather than exact methods, or (4) use exact evaluations of future rewards. Funding: This work was supported by the CY Initiative of Excellence [ANR-16- IDEX-0008]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/trsc.2022.0366 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
开心惜梦完成签到,获得积分10
3秒前
Mario发布了新的文献求助10
6秒前
18秒前
日光倾城完成签到 ,获得积分10
20秒前
Criminology34应助科研通管家采纳,获得10
24秒前
Criminology34应助科研通管家采纳,获得10
24秒前
Mario完成签到,获得积分10
25秒前
万能图书馆应助LucyMartinez采纳,获得10
28秒前
33秒前
39秒前
LucyMartinez发布了新的文献求助10
46秒前
50秒前
56秒前
Magic麦发布了新的文献求助10
1分钟前
1分钟前
庾稀给庾稀的求助进行了留言
1分钟前
hb发布了新的文献求助10
1分钟前
1分钟前
1分钟前
伊力扎提发布了新的文献求助10
1分钟前
伊力扎提完成签到,获得积分10
1分钟前
1分钟前
1分钟前
shou关注了科研通微信公众号
1分钟前
sj发布了新的文献求助10
1分钟前
sj完成签到,获得积分10
1分钟前
1分钟前
shou发布了新的文献求助10
1分钟前
1分钟前
1分钟前
充电宝应助哭泣的擎汉采纳,获得10
2分钟前
刘xy发布了新的文献求助10
2分钟前
Magic麦完成签到,获得积分10
2分钟前
2分钟前
orixero应助Magic麦采纳,获得10
2分钟前
哈哈哈哈发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746732
求助须知:如何正确求助?哪些是违规求助? 5438326
关于积分的说明 15355815
捐赠科研通 4886762
什么是DOI,文献DOI怎么找? 2627407
邀请新用户注册赠送积分活动 1575892
关于科研通互助平台的介绍 1532625