亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reinforcement Learning Approaches for the Orienteering Problem with Stochastic and Dynamic Release Dates

定向运动 强化学习 钢筋 计算机科学 运筹学 数学优化 人工智能 工程类 数学 结构工程
作者
Yuanyuan Li,Claudia Archetti,Ivana Ljubić
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:58 (5): 1143-1165 被引量:3
标识
DOI:10.1287/trsc.2022.0366
摘要

In this paper, we study a sequential decision-making problem faced by e-commerce carriers related to when to send out a vehicle from the central depot to serve customer requests and in which order to provide the service, under the assumption that the time at which parcels arrive at the depot is stochastic and dynamic. The objective is to maximize the expected number of parcels that can be delivered during service hours. We propose two reinforcement learning (RL) approaches for solving this problem. These approaches rely on a look-ahead strategy in which future release dates are sampled in a Monte Carlo fashion, and a batch approach is used to approximate future routes. Both RL approaches are based on value function approximation: One combines it with a consensus function (VFA-CF) and the other one with a two-stage stochastic integer linear programming model (VFA-2S). VFA-CF and VFA-2S do not need extensive training as they are based on very few hyperparameters and make good use of integer linear programming (ILP) and branch-and-cut–based exact methods to improve the quality of decisions. We also establish sufficient conditions for partial characterization of optimal policy and integrate them into VFA-CF/VFA-2S. In an empirical study, we conduct a competitive analysis using upper bounds with perfect information. We also show that VFA-CF and VFA-2S greatly outperform alternative approaches that (1) do not rely on future information (2) are based on point estimation of future information, (3) use heuristics rather than exact methods, or (4) use exact evaluations of future rewards. Funding: This work was supported by the CY Initiative of Excellence [ANR-16- IDEX-0008]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/trsc.2022.0366 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助黄晶晶采纳,获得10
3秒前
Lucas应助肥牛采纳,获得10
6秒前
12秒前
qianyixingchen完成签到 ,获得积分10
15秒前
曦耀发布了新的文献求助30
16秒前
王某完成签到 ,获得积分10
19秒前
19秒前
21秒前
26秒前
务实擎汉完成签到,获得积分10
30秒前
level完成签到 ,获得积分10
32秒前
啦啦啦蛤蛤蛤完成签到 ,获得积分10
34秒前
36秒前
yuki完成签到 ,获得积分10
41秒前
maolao发布了新的文献求助10
41秒前
TG303完成签到,获得积分10
51秒前
maolao完成签到,获得积分10
52秒前
56秒前
Ava应助小巧寒烟采纳,获得10
57秒前
hqy发布了新的文献求助10
1分钟前
动听的莫茗完成签到 ,获得积分20
1分钟前
无情小杨完成签到,获得积分20
1分钟前
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
1分钟前
打打应助科研通管家采纳,获得30
1分钟前
1分钟前
动听的莫茗关注了科研通微信公众号
1分钟前
epmoct完成签到 ,获得积分10
1分钟前
黄晶晶完成签到 ,获得积分10
1分钟前
Cloud完成签到 ,获得积分10
1分钟前
是清清子z耶完成签到,获得积分10
1分钟前
小豆芽完成签到,获得积分10
1分钟前
1分钟前
小巧寒烟发布了新的文献求助10
1分钟前
Anna完成签到 ,获得积分10
1分钟前
2分钟前
小巧寒烟完成签到,获得积分10
2分钟前
2分钟前
黄晶晶发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534135
求助须知:如何正确求助?哪些是违规求助? 4622256
关于积分的说明 14582179
捐赠科研通 4562367
什么是DOI,文献DOI怎么找? 2500155
邀请新用户注册赠送积分活动 1479721
关于科研通互助平台的介绍 1450795