Reinforcement Learning Approaches for the Orienteering Problem with Stochastic and Dynamic Release Dates

定向运动 强化学习 钢筋 计算机科学 运筹学 数学优化 人工智能 工程类 数学 结构工程
作者
Yuanyuan Li,Claudia Archetti,Ivana Ljubić
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:58 (5): 1143-1165 被引量:1
标识
DOI:10.1287/trsc.2022.0366
摘要

In this paper, we study a sequential decision-making problem faced by e-commerce carriers related to when to send out a vehicle from the central depot to serve customer requests and in which order to provide the service, under the assumption that the time at which parcels arrive at the depot is stochastic and dynamic. The objective is to maximize the expected number of parcels that can be delivered during service hours. We propose two reinforcement learning (RL) approaches for solving this problem. These approaches rely on a look-ahead strategy in which future release dates are sampled in a Monte Carlo fashion, and a batch approach is used to approximate future routes. Both RL approaches are based on value function approximation: One combines it with a consensus function (VFA-CF) and the other one with a two-stage stochastic integer linear programming model (VFA-2S). VFA-CF and VFA-2S do not need extensive training as they are based on very few hyperparameters and make good use of integer linear programming (ILP) and branch-and-cut–based exact methods to improve the quality of decisions. We also establish sufficient conditions for partial characterization of optimal policy and integrate them into VFA-CF/VFA-2S. In an empirical study, we conduct a competitive analysis using upper bounds with perfect information. We also show that VFA-CF and VFA-2S greatly outperform alternative approaches that (1) do not rely on future information (2) are based on point estimation of future information, (3) use heuristics rather than exact methods, or (4) use exact evaluations of future rewards. Funding: This work was supported by the CY Initiative of Excellence [ANR-16- IDEX-0008]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/trsc.2022.0366 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
驼驼完成签到,获得积分10
刚刚
Li完成签到,获得积分10
刚刚
刚刚
踏实的星星完成签到,获得积分20
1秒前
科研通AI2S应助jiani采纳,获得30
1秒前
思源应助T拐拐采纳,获得10
1秒前
1秒前
忱氿完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
充电宝应助郑泽航采纳,获得10
5秒前
zrw完成签到,获得积分10
5秒前
现代玉米发布了新的文献求助10
5秒前
ghirri发布了新的文献求助10
5秒前
小彩彩完成签到,获得积分10
6秒前
6秒前
蒋瑞轩发布了新的文献求助10
6秒前
zzz完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
9秒前
儒雅儒雅完成签到 ,获得积分10
10秒前
10秒前
慕青应助孤独的一鸣采纳,获得10
10秒前
10秒前
QYPANG发布了新的文献求助10
12秒前
淘气科研发布了新的文献求助10
12秒前
gehongbing完成签到 ,获得积分10
12秒前
王WW完成签到,获得积分10
12秒前
dong应助活泼的小伙采纳,获得10
12秒前
12秒前
13秒前
Bo发布了新的文献求助30
13秒前
14秒前
微笑面包关注了科研通微信公众号
14秒前
14秒前
15秒前
徐逊发布了新的文献求助10
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979146
求助须知:如何正确求助?哪些是违规求助? 3523056
关于积分的说明 11215854
捐赠科研通 3260487
什么是DOI,文献DOI怎么找? 1800049
邀请新用户注册赠送积分活动 878813
科研通“疑难数据库(出版商)”最低求助积分说明 807092