Reinforcement Learning Approaches for the Orienteering Problem with Stochastic and Dynamic Release Dates

定向运动 强化学习 钢筋 计算机科学 运筹学 数学优化 人工智能 工程类 数学 结构工程
作者
Yuanyuan Li,Claudia Archetti,Ivana Ljubić
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:58 (5): 1143-1165
标识
DOI:10.1287/trsc.2022.0366
摘要

In this paper, we study a sequential decision-making problem faced by e-commerce carriers related to when to send out a vehicle from the central depot to serve customer requests and in which order to provide the service, under the assumption that the time at which parcels arrive at the depot is stochastic and dynamic. The objective is to maximize the expected number of parcels that can be delivered during service hours. We propose two reinforcement learning (RL) approaches for solving this problem. These approaches rely on a look-ahead strategy in which future release dates are sampled in a Monte Carlo fashion, and a batch approach is used to approximate future routes. Both RL approaches are based on value function approximation: One combines it with a consensus function (VFA-CF) and the other one with a two-stage stochastic integer linear programming model (VFA-2S). VFA-CF and VFA-2S do not need extensive training as they are based on very few hyperparameters and make good use of integer linear programming (ILP) and branch-and-cut–based exact methods to improve the quality of decisions. We also establish sufficient conditions for partial characterization of optimal policy and integrate them into VFA-CF/VFA-2S. In an empirical study, we conduct a competitive analysis using upper bounds with perfect information. We also show that VFA-CF and VFA-2S greatly outperform alternative approaches that (1) do not rely on future information (2) are based on point estimation of future information, (3) use heuristics rather than exact methods, or (4) use exact evaluations of future rewards. Funding: This work was supported by the CY Initiative of Excellence [ANR-16- IDEX-0008]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/trsc.2022.0366 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗的绝悟完成签到,获得积分10
1秒前
1秒前
着急的cc完成签到,获得积分10
1秒前
2秒前
今天吃了吗应助FBQZDJG2122采纳,获得10
2秒前
爆米花应助jl采纳,获得10
3秒前
3秒前
3秒前
3秒前
卡塔赫纳发布了新的文献求助10
3秒前
JxJ关闭了JxJ文献求助
3秒前
3秒前
4秒前
M_完成签到 ,获得积分10
4秒前
5秒前
5秒前
着急的cc发布了新的文献求助10
7秒前
哈哈发布了新的文献求助10
7秒前
於伟祺完成签到,获得积分10
7秒前
9秒前
至黎发布了新的文献求助10
9秒前
9秒前
李健应助微笑铅笔采纳,获得10
9秒前
10秒前
LUMEN完成签到 ,获得积分10
10秒前
Owen应助风云采纳,获得10
10秒前
豆子发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
旺王小小酥完成签到,获得积分10
12秒前
zfgdr发布了新的文献求助10
12秒前
hcjxj完成签到,获得积分10
13秒前
Zhidong Wei完成签到,获得积分10
13秒前
free发布了新的文献求助10
14秒前
15秒前
17秒前
所所应助kingripple采纳,获得10
17秒前
17秒前
IngridX完成签到 ,获得积分10
18秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3247880
求助须知:如何正确求助?哪些是违规求助? 2891121
关于积分的说明 8266211
捐赠科研通 2559325
什么是DOI,文献DOI怎么找? 1388116
科研通“疑难数据库(出版商)”最低求助积分说明 650698
邀请新用户注册赠送积分活动 627581