已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Reinforcement Learning Approaches for the Orienteering Problem with Stochastic and Dynamic Release Dates

定向运动 强化学习 钢筋 计算机科学 运筹学 数学优化 人工智能 工程类 数学 结构工程
作者
Yuanyuan Li,Claudia Archetti,Ivana Ljubić
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:58 (5): 1143-1165 被引量:3
标识
DOI:10.1287/trsc.2022.0366
摘要

In this paper, we study a sequential decision-making problem faced by e-commerce carriers related to when to send out a vehicle from the central depot to serve customer requests and in which order to provide the service, under the assumption that the time at which parcels arrive at the depot is stochastic and dynamic. The objective is to maximize the expected number of parcels that can be delivered during service hours. We propose two reinforcement learning (RL) approaches for solving this problem. These approaches rely on a look-ahead strategy in which future release dates are sampled in a Monte Carlo fashion, and a batch approach is used to approximate future routes. Both RL approaches are based on value function approximation: One combines it with a consensus function (VFA-CF) and the other one with a two-stage stochastic integer linear programming model (VFA-2S). VFA-CF and VFA-2S do not need extensive training as they are based on very few hyperparameters and make good use of integer linear programming (ILP) and branch-and-cut–based exact methods to improve the quality of decisions. We also establish sufficient conditions for partial characterization of optimal policy and integrate them into VFA-CF/VFA-2S. In an empirical study, we conduct a competitive analysis using upper bounds with perfect information. We also show that VFA-CF and VFA-2S greatly outperform alternative approaches that (1) do not rely on future information (2) are based on point estimation of future information, (3) use heuristics rather than exact methods, or (4) use exact evaluations of future rewards. Funding: This work was supported by the CY Initiative of Excellence [ANR-16- IDEX-0008]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/trsc.2022.0366 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助科研小魏采纳,获得10
刚刚
wangdong完成签到,获得积分10
3秒前
3秒前
WAYNE完成签到,获得积分10
4秒前
智智完成签到 ,获得积分10
7秒前
情怀应助上岸采纳,获得10
9秒前
心空完成签到,获得积分10
9秒前
再见不难发布了新的文献求助10
9秒前
O已w时o完成签到 ,获得积分10
10秒前
10秒前
13秒前
️语完成签到 ,获得积分10
15秒前
abc123发布了新的文献求助10
16秒前
17秒前
大个应助优美紫槐采纳,获得10
17秒前
星星发布了新的文献求助10
23秒前
xxhhhhhh发布了新的文献求助10
23秒前
阳阳关注了科研通微信公众号
27秒前
研友_VZG7GZ应助gigadrill采纳,获得10
28秒前
CipherSage应助22采纳,获得10
29秒前
zhenggc完成签到 ,获得积分10
29秒前
30秒前
科研通AI6应助ruru采纳,获得10
33秒前
Breeze发布了新的文献求助10
35秒前
36秒前
JamesPei应助勤劳泽洋采纳,获得10
36秒前
37秒前
大模型应助威武的语蕊采纳,获得10
38秒前
38秒前
赘婿应助wj采纳,获得10
40秒前
40秒前
41秒前
侧耳倾听发布了新的文献求助10
41秒前
闫闫完成签到,获得积分10
42秒前
阳阳发布了新的文献求助10
42秒前
42秒前
42秒前
烟花应助LALA采纳,获得10
43秒前
科研通AI6应助再见不难采纳,获得10
45秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650215
求助须知:如何正确求助?哪些是违规求助? 4780069
关于积分的说明 15051513
捐赠科研通 4809083
什么是DOI,文献DOI怎么找? 2572018
邀请新用户注册赠送积分活动 1528258
关于科研通互助平台的介绍 1487075