已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Reinforcement Learning Approaches for the Orienteering Problem with Stochastic and Dynamic Release Dates

定向运动 强化学习 钢筋 计算机科学 运筹学 数学优化 人工智能 工程类 数学 结构工程
作者
Yuanyuan Li,Claudia Archetti,Ivana Ljubić
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:58 (5): 1143-1165 被引量:3
标识
DOI:10.1287/trsc.2022.0366
摘要

In this paper, we study a sequential decision-making problem faced by e-commerce carriers related to when to send out a vehicle from the central depot to serve customer requests and in which order to provide the service, under the assumption that the time at which parcels arrive at the depot is stochastic and dynamic. The objective is to maximize the expected number of parcels that can be delivered during service hours. We propose two reinforcement learning (RL) approaches for solving this problem. These approaches rely on a look-ahead strategy in which future release dates are sampled in a Monte Carlo fashion, and a batch approach is used to approximate future routes. Both RL approaches are based on value function approximation: One combines it with a consensus function (VFA-CF) and the other one with a two-stage stochastic integer linear programming model (VFA-2S). VFA-CF and VFA-2S do not need extensive training as they are based on very few hyperparameters and make good use of integer linear programming (ILP) and branch-and-cut–based exact methods to improve the quality of decisions. We also establish sufficient conditions for partial characterization of optimal policy and integrate them into VFA-CF/VFA-2S. In an empirical study, we conduct a competitive analysis using upper bounds with perfect information. We also show that VFA-CF and VFA-2S greatly outperform alternative approaches that (1) do not rely on future information (2) are based on point estimation of future information, (3) use heuristics rather than exact methods, or (4) use exact evaluations of future rewards. Funding: This work was supported by the CY Initiative of Excellence [ANR-16- IDEX-0008]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/trsc.2022.0366 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
薛定谔的猫完成签到,获得积分10
7秒前
btmy16完成签到,获得积分20
7秒前
9秒前
ff发布了新的文献求助10
12秒前
聆琳完成签到 ,获得积分10
12秒前
lsh发布了新的文献求助10
13秒前
俭朴蜜蜂完成签到 ,获得积分10
16秒前
上官若男应助btmy16采纳,获得10
17秒前
香蕉觅云应助快乐的易巧采纳,获得10
19秒前
纭声完成签到 ,获得积分10
19秒前
牛乃唐完成签到 ,获得积分10
24秒前
26秒前
傲娇的棉花糖完成签到 ,获得积分10
26秒前
伟川周完成签到 ,获得积分10
26秒前
何hyy完成签到,获得积分10
27秒前
香山叶正红完成签到 ,获得积分10
28秒前
abandon发布了新的文献求助10
32秒前
荷兰香猪完成签到,获得积分10
32秒前
涵涵涵hh完成签到 ,获得积分10
35秒前
七号在野闪闪完成签到 ,获得积分10
35秒前
39秒前
42秒前
Zr发布了新的文献求助10
43秒前
43秒前
GingerF应助科研通管家采纳,获得50
44秒前
orixero应助科研通管家采纳,获得10
44秒前
GingerF应助科研通管家采纳,获得50
44秒前
浮游应助科研通管家采纳,获得10
44秒前
CipherSage应助科研通管家采纳,获得10
44秒前
Lucas应助科研通管家采纳,获得10
44秒前
科研通AI5应助科研通管家采纳,获得10
44秒前
GingerF应助科研通管家采纳,获得50
44秒前
GingerF应助科研通管家采纳,获得50
44秒前
GingerF应助科研通管家采纳,获得50
44秒前
科研通AI6应助科研通管家采纳,获得10
44秒前
浮游应助科研通管家采纳,获得10
45秒前
45秒前
47秒前
mwm完成签到 ,获得积分10
47秒前
Zr完成签到,获得积分10
51秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5136626
求助须知:如何正确求助?哪些是违规求助? 4336724
关于积分的说明 13510467
捐赠科研通 4174839
什么是DOI,文献DOI怎么找? 2289082
邀请新用户注册赠送积分活动 1289774
关于科研通互助平台的介绍 1231100