已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Unsafe behavior identification on construction sites by combining computer vision and knowledge graph–based reasoning

鉴定(生物学) 计算机科学 知识图 人工智能 图形 机器学习 理论计算机科学 植物 生物
作者
Xinyu Mei,Feng Xu,Zhipeng Zhang,Tao Yu
出处
期刊:Engineering, Construction and Architectural Management [Emerald (MCB UP)]
卷期号:32 (12): 8360-8389 被引量:8
标识
DOI:10.1108/ecam-05-2024-0622
摘要

Purpose Workers' unsafe behavior is the main cause of construction safety accidents, thereby highlighting the critical importance of behavior-based management. To compensate for the limitations of computer vision in tackling knowledge-intensive issues, semantic-based methods have gained increasing attention in the field of construction safety management. Knowledge graph provides an efficient and visualized method for the identification of various unsafe behaviors. Design/methodology/approach This study proposes an unsafe behavior identification framework by integrating computer vision and knowledge graph–based reasoning. An enhanced ontology model anchors our framework, with image features from YOLOv5, COCO Panoptic Segmentation and DeepSORT integrated into the graph database, culminating in a structured knowledge graph. An inference module is also developed, enabling automated the extraction of unsafe behavior knowledge through rule-based reasoning. Findings A case application is implemented to demonstrate the feasibility and effectiveness of the proposed method. Results show that the method can identify various unsafe behaviors from images of construction sites and provide mitigation recommendations for safety managers by automated reasoning, thus supporting on-site safety management and safety education. Originality/value Existing studies focus on spatial relationships, often neglecting the diversified spatiotemporal information in images. Besides, previous research in construction safety only partially automated knowledge graph construction and reasoning processes. In contrast, this study constructs an enhanced knowledge graph integrating static and dynamic data, coupled with an inference module for fully automated knowledge-based unsafe behavior identification. It can help managers grasp the workers’ behavior dynamics and timely implement measures to correct violations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
扣子发布了新的文献求助10
1秒前
shuaiqidewang完成签到 ,获得积分10
6秒前
8秒前
Sing完成签到 ,获得积分10
12秒前
gdh发布了新的文献求助10
12秒前
淡淡的一手完成签到,获得积分10
19秒前
22秒前
陈不沉完成签到 ,获得积分10
24秒前
一二发布了新的文献求助10
26秒前
摇一摇完成签到,获得积分10
29秒前
Perry完成签到,获得积分0
30秒前
32秒前
若宫伊芙发布了新的文献求助10
39秒前
40秒前
40秒前
刘成完成签到,获得积分10
40秒前
逃离鸭科夫完成签到,获得积分10
40秒前
41秒前
文明8完成签到 ,获得积分10
43秒前
璐鹿娜发布了新的文献求助10
45秒前
哈哈哈完成签到 ,获得积分10
45秒前
单纯一笑完成签到,获得积分10
47秒前
王饱饱完成签到 ,获得积分10
48秒前
chaoschen完成签到,获得积分10
48秒前
12345发布了新的文献求助10
49秒前
SCINEXUS完成签到,获得积分0
50秒前
cytheria完成签到 ,获得积分10
54秒前
医研完成签到 ,获得积分10
56秒前
顺其自然完成签到 ,获得积分10
58秒前
whoknowsname完成签到,获得积分10
1分钟前
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
didi完成签到 ,获得积分10
1分钟前
橙子发布了新的文献求助10
1分钟前
1分钟前
璐鹿娜完成签到,获得积分10
1分钟前
茜你亦首歌完成签到 ,获得积分10
1分钟前
Lyw完成签到 ,获得积分10
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
The recovery-stress questionnaires : user manual 600
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5854785
求助须知:如何正确求助?哪些是违规求助? 6300675
关于积分的说明 15632556
捐赠科研通 4969944
什么是DOI,文献DOI怎么找? 2680175
邀请新用户注册赠送积分活动 1624212
关于科研通互助平台的介绍 1580962

今日热心研友

科研通AI6.2
6 110
charint
60
ceeray23
4 10
Ava
40
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10