Noise‐assisted hybrid attention networks for low‐dose PET and CT denoising

人工智能 特征(语言学) 噪音(视频) 迭代重建 计算机科学 模式识别(心理学) 图像质量 降噪 医学影像学 特征提取 正电子发射断层摄影术 图像噪声 核医学 计算机视觉 医学 图像(数学) 哲学 语言学
作者
Hengzhi Xue,Yudong Yao,Yueyang Teng
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17430
摘要

Abstract Background Positron emission tomography (PET) and computed tomography (CT) play a vital role in tumor‐related medical diagnosis, assessment, and treatment planning. However, full‐dose PET and CT pose the risk of excessive radiation exposure to patients, whereas low‐dose images compromise image quality, impacting subsequent tumor recognition and disease diagnosis. Purpose To solve such problems, we propose a Noise‐Assisted Hybrid Attention Network (NAHANet) to reconstruct full‐dose PET and CT images from low‐dose PET (LDPET) and CT (LDCT) images to reduce patient radiation risks while ensuring the performance of subsequent tumor recognition. Methods NAHANet contains two branches: the noise feature prediction branch (NFPB) and the cascaded reconstruction branch. Among them, NFPB providing noise features for the cascade reconstruction branch. The cascaded reconstruction branch comprises a shallow feature extraction module and a reconstruction module which contains a series of cascaded noise feature fusion blocks (NFFBs). Among these, the NFFB fuses the features extracted from low‐dose images with the noise features obtained by NFPB to improve the feature extraction capability. To validate the effectiveness of the NAHANet method, we performed experiments using two public available datasets: the Ultra‐low Dose PET Imaging Challenge dataset and Low Dose CT Grand Challenge dataset. Results As a result, the proposed NAHANet achieved higher performance on common indicators. For example, on the CT dataset, the PSNR and SSIM indicators were improved by 4.1 dB and 0.06 respectively, and the rMSE indicator was reduced by 5.46 compared with the LDCT; on the PET dataset, the PSNR and SSIM was improved by 3.37 dB and 0.02, and the rMSE was reduced by 9.04 compared with the LDPET. Conclusions This paper proposes a transformer‐based denoising algorithm, which utilizes hybrid attention to extract high‐level features of low dose images and fuses noise features to optimize the denoising performance of the network, achieving good performance improvements on low‐dose CT and PET datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中夜天完成签到 ,获得积分10
刚刚
wuye发布了新的文献求助10
1秒前
1秒前
上官若男应助阔达的曼凡采纳,获得10
2秒前
2秒前
JJDS完成签到,获得积分10
2秒前
御风111发布了新的文献求助10
3秒前
叶液发布了新的文献求助30
3秒前
Orange应助懵懂的小蚂蚁采纳,获得10
3秒前
研友_ZGDEG8发布了新的文献求助10
4秒前
希望天下0贩的0应助南巷采纳,获得10
4秒前
搞怪路灯完成签到 ,获得积分10
5秒前
Hello应助韩Burger采纳,获得10
5秒前
活力寒梅发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
会游泳的猪完成签到,获得积分10
6秒前
7秒前
7秒前
打打应助阳光的紫丝采纳,获得10
7秒前
嘉叶完成签到,获得积分10
7秒前
Clancy发布了新的文献求助10
8秒前
哈哈哈完成签到,获得积分20
8秒前
9秒前
ZYao65发布了新的文献求助10
10秒前
爆米花应助wxaaaa采纳,获得10
10秒前
阿池发布了新的文献求助10
11秒前
阳佟怀绿发布了新的文献求助10
11秒前
11秒前
starry发布了新的文献求助10
11秒前
家迎松发布了新的文献求助10
12秒前
樱桃小热巴完成签到 ,获得积分10
12秒前
哈哈哈发布了新的文献求助20
12秒前
12秒前
陈媛发布了新的文献求助10
13秒前
众生平等发布了新的文献求助10
13秒前
13秒前
形而完成签到,获得积分10
13秒前
14秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475144
求助须知:如何正确求助?哪些是违规求助? 3067108
关于积分的说明 9102651
捐赠科研通 2758525
什么是DOI,文献DOI怎么找? 1513685
邀请新用户注册赠送积分活动 699763
科研通“疑难数据库(出版商)”最低求助积分说明 699119