钙钛矿(结构)
材料科学
钝化
能量转换效率
偶极子
钙钛矿太阳能电池
图层(电子)
化学物理
分子
磁滞
光电子学
化学工程
纳米技术
化学
有机化学
工程类
物理
量子力学
作者
NULL AUTHOR_ID,NULL AUTHOR_ID,NULL AUTHOR_ID,Zuhong Zhang,NULL AUTHOR_ID,NULL AUTHOR_ID,NULL AUTHOR_ID,Luyao Wang,NULL AUTHOR_ID,NULL AUTHOR_ID,R. Mathew Roy,NULL AUTHOR_ID,NULL AUTHOR_ID,Junhan Zhang,NULL AUTHOR_ID,Michael Saliba,NULL AUTHOR_ID,NULL AUTHOR_ID
标识
DOI:10.1002/adma.202407433
摘要
Interface-induced nonradiative recombination losses at the perovskite/electron transport layer (ETL) are an impediment to improving the efficiency and stability of inverted (p-i-n) perovskite solar cells (PSCs). Tridecafluorohexane-1-sulfonic acid potassium (TFHSP) is employed as a multifunctional dipole molecule to modify the perovskite surface. The solid coordination and hydrogen bonding efficiently passivate the surface defects, thereby reducing nonradiative recombination. The induced positive dipole layer between the perovskite and ETLs improves the energy band alignment, enhancing interface charge extraction. Additionally, the strong interaction between TFHSP and the perovskite stabilizes the perovskite surface, while the hydrophobic fluorinated moieties prevent the ingress of water and oxygen, enhancing the device stability. The resultant devices achieve a power conversion efficiency (PCE) of 24.6%. The unencapsulated devices retain 91% of their initial efficiency after 1000 h in air with 60% relative humidity, and 95% after 500 h under maximum power point (MPP) tracking at 35 °C. The utilization of multifunctional dipole molecules opens new avenues for high-performance and long-term stable perovskite devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI