材料科学
纳米材料
微观结构
保温
吸收(声学)
复合材料
热的
纳米技术
物理
气象学
图层(电子)
作者
Tianyu Zhao,Fang Ye,Bo Huang,Zhaochen Li,Laifei Cheng
标识
DOI:10.1021/acsami.4c09772
摘要
Multifunctional materials integrated with electromagnetic wave absorption (EWA), thermal insulation, and lightweight properties are urgently indispensable for the flourishing advancement of space technology, which can simultaneously prevent electromagnetic detection and resist aerodynamic heating. To achieve excellent synergistic EWA and thermal insulation performance, the elaborate regulate the microstructure and dimension of nanomaterials has emerged as a captivating research direction. However, comprehending the structure-property relationships between microstructure, electromagnetic response, and thermal insulation mechanisms remains a significant challenge. Herein, a comprehensive perspective focuses on the microstructure design encompassing various dimensions of nanomaterials, providing a comprehensive understanding of correlations among structure, EWA, and thermal insulation. First, the cutting-edge mechanisms of EWA and thermal insulation are elaborated, followed by the relationship between the dimensions of nanomaterials. Moreover, the synergistic design methods of EWA and thermal insulation are explored. Lastly, this review summarizes the corresponding shortcomings and issues of current EWA-integrated thermal insulation materials and proposes breakthrough directions for the creation of materials with superior performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI