Exploring the unknown: how can we improve single-cell RNAseq cell type annotations in non-model organisms?

多细胞生物 计算生物学 背景(考古学) 基因组 细胞 电池类型 有机体 模式生物 生物 注释 计算机科学 生物信息学 遗传学 基因 古生物学
作者
Kevin H. Wong,Natalia Andrade,Nikki Traylor‐Knowles
出处
期刊:Integrative and Comparative Biology [Oxford University Press]
标识
DOI:10.1093/icb/icae112
摘要

Single-cell RNA sequencing (scRNAseq) is a powerful tool to describe cell types in multicellular organisms across the animal kingdom. In standard scRNAseq analysis pipelines, clusters of cells with similar transcriptional signatures are given cell type labels based on marker genes, which infer specialized known characteristics. Since these analyses are designed for model organisms, such as humans and mice, problems arise when attempting to label cell types of distantly related, non-model species that have unique or divergent cell types. Consequently, this leads to limited discovery of novel species-specific cell types and potential mis-annotation of cell types in non-model species when using scRNAseq. To address this problem, we discuss recently published approaches that help annotate scRNAseq clusters for any non-model organism. We first suggest that annotating with an evolutionary context of cell lineages will aid in the discovery of novel cell types and provide a marker-free approach to compare cell types across distantly related species. Second, machine learning has greatly improved bioinformatic analyses, so we highlight some open-source programs that use reference-free approaches to annotate cell clusters. Lastly, we propose the use of unannotated genes as potential cell markers for non-model organisms, as many do not have fully annotated genomes and this data is often disregarded. Improving single-cell annotations will aid the discovery of novel cell types and enhance our understanding of non-model organisms at a cellular level. By unifying approaches to annotate cell types in non-model organisms, we can increase the confidence of cell annotation label transfer and the flexibility to discover novel cell types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
panpanliumin完成签到,获得积分0
2秒前
攀攀完成签到 ,获得积分20
2秒前
梦丸完成签到 ,获得积分10
2秒前
哭泣的缘郡完成签到 ,获得积分10
2秒前
小李完成签到 ,获得积分10
4秒前
5秒前
SC完成签到 ,获得积分10
5秒前
自然怀梦完成签到,获得积分10
10秒前
踏雪飞鸿完成签到,获得积分10
10秒前
不配.应助饱满书文采纳,获得20
11秒前
12秒前
14秒前
糕冷草莓完成签到,获得积分10
16秒前
1huiqina发布了新的文献求助10
16秒前
ycw992847127完成签到,获得积分10
17秒前
白白白完成签到,获得积分10
18秒前
李克杨发布了新的文献求助10
18秒前
SSSstriker完成签到,获得积分10
21秒前
小美爱科研完成签到,获得积分10
21秒前
爱吃修勾右完成签到 ,获得积分20
23秒前
俭朴新之完成签到 ,获得积分10
23秒前
David完成签到 ,获得积分0
24秒前
28秒前
勇者先享受生活完成签到 ,获得积分10
29秒前
专注的水壶完成签到 ,获得积分10
29秒前
李克杨完成签到,获得积分10
29秒前
mito应助小李采纳,获得30
29秒前
忘忧Aquarius完成签到,获得积分10
32秒前
17852573662发布了新的文献求助10
35秒前
麕麕完成签到 ,获得积分10
35秒前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
37秒前
Airhug完成签到 ,获得积分10
38秒前
支半雪发布了新的文献求助60
41秒前
张小度ever完成签到 ,获得积分10
43秒前
一心完成签到,获得积分10
44秒前
敏感元正完成签到,获得积分10
44秒前
萧水白应助zzt采纳,获得10
45秒前
NDrDicp完成签到,获得积分10
45秒前
稳重的秋天完成签到,获得积分10
46秒前
鄂老三完成签到 ,获得积分10
47秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137101
求助须知:如何正确求助?哪些是违规求助? 2788086
关于积分的说明 7784523
捐赠科研通 2444109
什么是DOI,文献DOI怎么找? 1299758
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011