亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Solving Advanced Task-Specific Problems in Measurement Sciences with Generative AI

化学 任务(项目管理) 生成语法 生化工程 管理科学 人工智能 系统工程 计算机科学 工程类 经济
作者
M. Farooq Wahab,Troy T. Handlovic,Souvik Roy,Ryan Jacob Burk,Daniel W. Armstrong
出处
期刊:Analytical Chemistry [American Chemical Society]
被引量:3
标识
DOI:10.1021/acs.analchem.4c01734
摘要

The Generative Pre-Trained Transformer known as ChatGPT-4 has undergone extensive pretraining on a diverse data set, enabling it to generate coherent and contextually relevant text based on the input it receives. This capability allows it to perform tasks from answering questions and has attracted significant interest in material sciences, synthetic chemistry, and drug discovery. In this work, we posed four advanced task-specific problems to ChatGPT, which were recently published in leading journals for topics in analytical chemistry, spectroscopy, bioimage super-resolution, and electrochemistry. ChatGPT-4 successfully implemented the four ideas after assigning the "persona" to the AI and posing targeted questions. We show two cases where "unguided" ChatGPT could complete the assignments with minimal human direction. The construction of a microwave spectrum from a free induction curve and super-resolution of bioimages was accomplished using this approach. Two other specific tasks, correcting a complex baseline with morphological operations of set theory and estimating the diffusion current, required additional input, e.g., equations and specific directions from the user. In each case, the MATLAB code was eventually generated by ChatGPT-4 even when the original authors did not provide any code themselves. We show that a validation test must be implemented to detect and correct mistakes made by ChatGPT-4, followed by feedback correction. These approaches will pave the way for open and transparent science and eliminate the black boxes in measurement science when it comes to advanced data processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
馆长完成签到,获得积分0
29秒前
量子星尘发布了新的文献求助10
35秒前
WebCasa完成签到,获得积分10
43秒前
Lny应助科研通管家采纳,获得10
1分钟前
Lny应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Lny应助科研通管家采纳,获得10
1分钟前
1分钟前
毛毛完成签到,获得积分10
1分钟前
1分钟前
繁荣的青旋完成签到,获得积分10
1分钟前
科研落水狗完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
馆长应助科研通管家采纳,获得10
3分钟前
3分钟前
熊熊完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
MchemG完成签到,获得积分0
3分钟前
zsmj23完成签到 ,获得积分0
4分钟前
4分钟前
4分钟前
who完成签到,获得积分10
4分钟前
who发布了新的文献求助10
4分钟前
5分钟前
量子星尘发布了新的文献求助20
5分钟前
6分钟前
QCB完成签到 ,获得积分10
6分钟前
6分钟前
Vino发布了新的文献求助10
6分钟前
Vino完成签到,获得积分10
6分钟前
7分钟前
Orange应助科研通管家采纳,获得10
7分钟前
Cherie77完成签到 ,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
穆振家完成签到,获得积分10
7分钟前
7分钟前
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596127
求助须知:如何正确求助?哪些是违规求助? 4008212
关于积分的说明 12408971
捐赠科研通 3687127
什么是DOI,文献DOI怎么找? 2032233
邀请新用户注册赠送积分活动 1065470
科研通“疑难数据库(出版商)”最低求助积分说明 950783