Solving Advanced Task-Specific Problems in Measurement Sciences with Generative AI

化学 任务(项目管理) 生成语法 生化工程 管理科学 人工智能 系统工程 计算机科学 工程类 经济
作者
M. Farooq Wahab,Troy T. Handlovic,Souvik Roy,Ryan Jacob Burk,Daniel W. Armstrong
出处
期刊:Analytical Chemistry [American Chemical Society]
被引量:2
标识
DOI:10.1021/acs.analchem.4c01734
摘要

The Generative Pre-Trained Transformer known as ChatGPT-4 has undergone extensive pretraining on a diverse data set, enabling it to generate coherent and contextually relevant text based on the input it receives. This capability allows it to perform tasks from answering questions and has attracted significant interest in material sciences, synthetic chemistry, and drug discovery. In this work, we posed four advanced task-specific problems to ChatGPT, which were recently published in leading journals for topics in analytical chemistry, spectroscopy, bioimage super-resolution, and electrochemistry. ChatGPT-4 successfully implemented the four ideas after assigning the "persona" to the AI and posing targeted questions. We show two cases where "unguided" ChatGPT could complete the assignments with minimal human direction. The construction of a microwave spectrum from a free induction curve and super-resolution of bioimages was accomplished using this approach. Two other specific tasks, correcting a complex baseline with morphological operations of set theory and estimating the diffusion current, required additional input, e.g., equations and specific directions from the user. In each case, the MATLAB code was eventually generated by ChatGPT-4 even when the original authors did not provide any code themselves. We show that a validation test must be implemented to detect and correct mistakes made by ChatGPT-4, followed by feedback correction. These approaches will pave the way for open and transparent science and eliminate the black boxes in measurement science when it comes to advanced data processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助miemie采纳,获得10
刚刚
刚刚
刚刚
memo完成签到,获得积分10
1秒前
赘婿应助谨慎的映安采纳,获得10
2秒前
天天快乐应助geold采纳,获得10
2秒前
Lynn发布了新的文献求助10
2秒前
May发布了新的文献求助10
3秒前
张文康完成签到,获得积分10
3秒前
annter完成签到,获得积分10
4秒前
背后飞松完成签到 ,获得积分10
4秒前
活泼的似狮完成签到,获得积分10
4秒前
称心的保温杯完成签到 ,获得积分10
4秒前
Teragous完成签到,获得积分10
5秒前
ttt发布了新的文献求助20
5秒前
仪器通完成签到,获得积分10
6秒前
6秒前
6秒前
杨金城完成签到,获得积分10
6秒前
王青青发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
许是城陌完成签到,获得积分10
9秒前
开朗含海发布了新的文献求助10
9秒前
www完成签到 ,获得积分10
9秒前
10秒前
罗渲童发布了新的文献求助10
10秒前
无无发布了新的文献求助10
11秒前
Xie发布了新的文献求助10
12秒前
ZhangDaying发布了新的文献求助10
12秒前
12秒前
博尔塔拉完成签到,获得积分10
13秒前
晓晓雪发布了新的文献求助10
13秒前
贾千兰完成签到,获得积分10
13秒前
星辰大海应助许是城陌采纳,获得10
15秒前
15秒前
16秒前
我是老大应助资浩阑采纳,获得10
16秒前
17秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3227691
求助须知:如何正确求助?哪些是违规求助? 2875664
关于积分的说明 8192122
捐赠科研通 2542829
什么是DOI,文献DOI怎么找? 1373179
科研通“疑难数据库(出版商)”最低求助积分说明 646710
邀请新用户注册赠送积分活动 621181