亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Solving Advanced Task-Specific Problems in Measurement Sciences with Generative AI

化学 任务(项目管理) 生成语法 生化工程 管理科学 人工智能 系统工程 计算机科学 工程类 经济
作者
M. Farooq Wahab,Troy T. Handlovic,Souvik Roy,Ryan Jacob Burk,Daniel W. Armstrong
出处
期刊:Analytical Chemistry [American Chemical Society]
被引量:3
标识
DOI:10.1021/acs.analchem.4c01734
摘要

The Generative Pre-Trained Transformer known as ChatGPT-4 has undergone extensive pretraining on a diverse data set, enabling it to generate coherent and contextually relevant text based on the input it receives. This capability allows it to perform tasks from answering questions and has attracted significant interest in material sciences, synthetic chemistry, and drug discovery. In this work, we posed four advanced task-specific problems to ChatGPT, which were recently published in leading journals for topics in analytical chemistry, spectroscopy, bioimage super-resolution, and electrochemistry. ChatGPT-4 successfully implemented the four ideas after assigning the "persona" to the AI and posing targeted questions. We show two cases where "unguided" ChatGPT could complete the assignments with minimal human direction. The construction of a microwave spectrum from a free induction curve and super-resolution of bioimages was accomplished using this approach. Two other specific tasks, correcting a complex baseline with morphological operations of set theory and estimating the diffusion current, required additional input, e.g., equations and specific directions from the user. In each case, the MATLAB code was eventually generated by ChatGPT-4 even when the original authors did not provide any code themselves. We show that a validation test must be implemented to detect and correct mistakes made by ChatGPT-4, followed by feedback correction. These approaches will pave the way for open and transparent science and eliminate the black boxes in measurement science when it comes to advanced data processing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
KKK完成签到,获得积分10
8秒前
大模型应助KKK采纳,获得10
15秒前
16秒前
17秒前
沿途有你完成签到 ,获得积分10
19秒前
劉浏琉完成签到,获得积分10
20秒前
DrN发布了新的文献求助10
20秒前
26秒前
28秒前
30秒前
hyhyhyhy完成签到,获得积分10
30秒前
hyhyhyhy发布了新的文献求助10
33秒前
ctttt完成签到 ,获得积分10
38秒前
科研通AI6应助hyhyhyhy采纳,获得10
41秒前
42秒前
43秒前
ding应助hyhyhyhy采纳,获得10
53秒前
58秒前
炙心完成签到,获得积分10
58秒前
子平完成签到 ,获得积分0
1分钟前
炙心发布了新的文献求助10
1分钟前
1分钟前
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
1分钟前
小马甲应助Yuuw采纳,获得10
1分钟前
1分钟前
wang5945完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
nini完成签到,获得积分10
1分钟前
张元东完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
淡淡土豆应助Nomb1采纳,获得10
2分钟前
浮游应助Nomb1采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509411
求助须知:如何正确求助?哪些是违规求助? 4604320
关于积分的说明 14489649
捐赠科研通 4539087
什么是DOI,文献DOI怎么找? 2487289
邀请新用户注册赠送积分活动 1469742
关于科研通互助平台的介绍 1441992