Solving Advanced Task-Specific Problems in Measurement Sciences with Generative AI

化学 任务(项目管理) 生成语法 生化工程 管理科学 人工智能 系统工程 计算机科学 工程类 经济
作者
M. Farooq Wahab,Troy T. Handlovic,Souvik Roy,Ryan Jacob Burk,Daniel W. Armstrong
出处
期刊:Analytical Chemistry [American Chemical Society]
被引量:3
标识
DOI:10.1021/acs.analchem.4c01734
摘要

The Generative Pre-Trained Transformer known as ChatGPT-4 has undergone extensive pretraining on a diverse data set, enabling it to generate coherent and contextually relevant text based on the input it receives. This capability allows it to perform tasks from answering questions and has attracted significant interest in material sciences, synthetic chemistry, and drug discovery. In this work, we posed four advanced task-specific problems to ChatGPT, which were recently published in leading journals for topics in analytical chemistry, spectroscopy, bioimage super-resolution, and electrochemistry. ChatGPT-4 successfully implemented the four ideas after assigning the "persona" to the AI and posing targeted questions. We show two cases where "unguided" ChatGPT could complete the assignments with minimal human direction. The construction of a microwave spectrum from a free induction curve and super-resolution of bioimages was accomplished using this approach. Two other specific tasks, correcting a complex baseline with morphological operations of set theory and estimating the diffusion current, required additional input, e.g., equations and specific directions from the user. In each case, the MATLAB code was eventually generated by ChatGPT-4 even when the original authors did not provide any code themselves. We show that a validation test must be implemented to detect and correct mistakes made by ChatGPT-4, followed by feedback correction. These approaches will pave the way for open and transparent science and eliminate the black boxes in measurement science when it comes to advanced data processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一只长颈卢完成签到 ,获得积分10
1秒前
可爱的函函应助暴走芭比采纳,获得10
2秒前
zsyhcl完成签到,获得积分10
2秒前
哭泣毛巾发布了新的文献求助10
3秒前
lyh发布了新的文献求助10
3秒前
4秒前
亲爱的Y小姐完成签到,获得积分10
5秒前
dongge发布了新的文献求助10
6秒前
科研通AI6应助西北采纳,获得10
6秒前
6秒前
10秒前
李爱国应助Tiamo采纳,获得10
10秒前
天玄一刀完成签到,获得积分10
12秒前
英姑应助从今伴君行采纳,获得10
12秒前
冒如怿发布了新的文献求助30
12秒前
米奇完成签到,获得积分10
12秒前
12秒前
14秒前
15秒前
jjccc发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
czz014完成签到,获得积分10
18秒前
19秒前
21秒前
21秒前
22秒前
我是老大应助Wiki采纳,获得10
22秒前
磊磊发布了新的文献求助10
22秒前
hhh发布了新的文献求助10
22秒前
日落收藏家完成签到 ,获得积分10
23秒前
汉堡包应助Antibody6采纳,获得10
23秒前
Or发布了新的文献求助10
24秒前
26秒前
Akim应助直率的秋尽采纳,获得30
27秒前
bie123发布了新的文献求助10
27秒前
暴走芭比发布了新的文献求助10
27秒前
动听衬衫发布了新的文献求助10
27秒前
FashionBoy应助执行正义采纳,获得10
28秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443296
求助须知:如何正确求助?哪些是违规求助? 4553176
关于积分的说明 14241249
捐赠科研通 4474739
什么是DOI,文献DOI怎么找? 2452158
邀请新用户注册赠送积分活动 1443119
关于科研通互助平台的介绍 1418742