Solving Advanced Task-Specific Problems in Measurement Sciences with Generative AI

化学 任务(项目管理) 生成语法 生化工程 管理科学 人工智能 系统工程 计算机科学 工程类 经济
作者
M. Farooq Wahab,Troy T. Handlovic,Souvik Roy,Ryan Jacob Burk,Daniel W. Armstrong
出处
期刊:Analytical Chemistry [American Chemical Society]
被引量:3
标识
DOI:10.1021/acs.analchem.4c01734
摘要

The Generative Pre-Trained Transformer known as ChatGPT-4 has undergone extensive pretraining on a diverse data set, enabling it to generate coherent and contextually relevant text based on the input it receives. This capability allows it to perform tasks from answering questions and has attracted significant interest in material sciences, synthetic chemistry, and drug discovery. In this work, we posed four advanced task-specific problems to ChatGPT, which were recently published in leading journals for topics in analytical chemistry, spectroscopy, bioimage super-resolution, and electrochemistry. ChatGPT-4 successfully implemented the four ideas after assigning the "persona" to the AI and posing targeted questions. We show two cases where "unguided" ChatGPT could complete the assignments with minimal human direction. The construction of a microwave spectrum from a free induction curve and super-resolution of bioimages was accomplished using this approach. Two other specific tasks, correcting a complex baseline with morphological operations of set theory and estimating the diffusion current, required additional input, e.g., equations and specific directions from the user. In each case, the MATLAB code was eventually generated by ChatGPT-4 even when the original authors did not provide any code themselves. We show that a validation test must be implemented to detect and correct mistakes made by ChatGPT-4, followed by feedback correction. These approaches will pave the way for open and transparent science and eliminate the black boxes in measurement science when it comes to advanced data processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Amy发布了新的文献求助10
3秒前
CHENJIRU发布了新的文献求助10
3秒前
4秒前
冰阔落完成签到 ,获得积分10
5秒前
5秒前
Emma发布了新的文献求助10
6秒前
Passskd发布了新的文献求助10
8秒前
科研通AI6应助13508104971采纳,获得10
8秒前
9秒前
华仔应助小王同学采纳,获得10
10秒前
Rainielove0215完成签到,获得积分0
11秒前
11秒前
Moon完成签到,获得积分10
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
小马甲应助明月清风采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
英吉利25发布了新的文献求助10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
小熊猫应助科研通管家采纳,获得10
14秒前
orixero应助科研通管家采纳,获得10
14秒前
15秒前
ZiyuanLi完成签到 ,获得积分10
16秒前
爆米花应助Amy采纳,获得10
16秒前
kk发布了新的文献求助10
16秒前
21秒前
科研狗完成签到 ,获得积分10
21秒前
和谐的火龙果完成签到,获得积分10
23秒前
24秒前
cosimo完成签到 ,获得积分10
27秒前
CZLhaust发布了新的文献求助10
28秒前
phl发布了新的文献求助10
28秒前
llj发布了新的文献求助20
28秒前
DS驳回了小二郎应助
29秒前
29秒前
丘比特应助piaopiao采纳,获得10
30秒前
传奇3应助CZLhaust采纳,获得30
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1500
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123717
求助须知:如何正确求助?哪些是违规求助? 4328095
关于积分的说明 13486321
捐赠科研通 4162431
什么是DOI,文献DOI怎么找? 2281452
邀请新用户注册赠送积分活动 1282864
关于科研通互助平台的介绍 1221964