卵巢癌
肿瘤科
医学
免疫疗法
免疫系统
个性化医疗
内科学
生物信息学
癌症
计算生物学
生物
免疫学
作者
Shuo-Fu Chen,Liang-Yun Wang,Yi-Sian Lin,Cho-Yi Chen
标识
DOI:10.1186/s13048-024-01518-w
摘要
Abstract Background Personalized medicine remains an unmet need in ovarian cancer due to its heterogeneous nature and complex immune microenvironments, which has gained increasing attention in the era of immunotherapy. A key obstacle is the lack of reliable biomarkers to identify patients who would benefit significantly from the therapy. While conventional clinicopathological factors have exhibited limited efficacy as prognostic indicators in ovarian cancer, multi-omics profiling presents a promising avenue for comprehending the interplay between the tumor and immune components. Here we aimed to leverage the individual proteomic and transcriptomic profiles of ovarian cancer patients to develop an effective protein-based signature capable of prognostication and distinguishing responses to immunotherapy. Methods The workflow was demonstrated based on the Reverse Phase Protein Array (RPPA) and RNA-sequencing profiles of ovarian cancer patients from The Cancer Genome Atlas (TCGA). The algorithm began by clustering patients using immune-related gene sets, which allowed us to identify immune-related proteins of interest. Next, a multi-stage process involving LASSO and Cox regression was employed to distill a prognostic signature encompassing five immune-related proteins. Based on the signature, we subsequently calculated the risk score for each patient and evaluated its prognostic performance by comparing this model with conventional clinicopathological characteristics. Results We developed and validated a protein-based prognostic signature in a cohort of 377 ovarian cancer patients. The risk signature outperformed conventional clinicopathological factors, such as age, grade, stage, microsatellite instability (MSI), and homologous recombination deficiency (HRD) status, in terms of prognoses. Patients in the high-risk group had significantly unfavorable overall survival ( p < 0.001). Moreover, our signature effectively stratified patients into subgroups with distinct immune landscapes. The high-risk group exhibited higher levels of CD8 T-cell infiltration and a potentially greater proportion of immunotherapy responders. The co-activation of the TGF-β pathway and cancer-associated fibroblasts could impair the ability of cytotoxic T cells to eliminate cancer cells, leading to poor outcomes in the high-risk group. Conclusions The protein-based signature not only aids in evaluating the prognosis but also provides valuable insights into the tumor immune microenvironments in ovarian cancer. Together our findings highlight the importance of a thorough understanding of the immunosuppressive tumor microenvironment in ovarian cancer to guide the development of more effective immunotherapies.
科研通智能强力驱动
Strongly Powered by AbleSci AI