气凝胶
复合数
材料科学
杰纳斯
传热
芳纶
热的
复合材料
纳米技术
热力学
物理
纤维
作者
Jianpeng Wu,Yu U. Wang,Pingan Song,Min Sang,Ziyang Fan,Yunqi Xu,Xinyi Wang,Shuai Liu,Zimu Li,Shouhu Xuan,Ken Cham‐Fai Leung,Xinglong Gong
出处
期刊:Nano Letters
[American Chemical Society]
日期:2024-10-28
标识
DOI:10.1021/acs.nanolett.4c03652
摘要
Warmth preservation in cold climates requires a long-term heat supply. Conventional thermal devices usually deliver excessive heat and have difficulty preventing heat loss. Herein, to achieve durable thermal comfort, an asymmetric composite (AAAC) is devised through vacuum-filtrating silver nanowires (AgNWs) onto the surface of a poly(ethylene glycol) (PEG)-infiltrated aramid nanofiber aerogel. AgNW e-skin can transfer strong Joule heat to the back side of the AAAC, where the infused PEG further stores thermal energy by phase transition and then releases it to the body constantly after the power is off. Base on the Janus structure, the AAAC can provide thermotherapy for human waists and knees, holding a suitable temperature range of 37–39 °C for 5–8 min without a heat source. In addition, low infrared emissivity (0.064–0.315) of e-skin allows the AAAC to conceal thermal targets while producing Joule heat, which achieves comfortable and safe thermal management in multiple occasions including daily life and military warfare.
科研通智能强力驱动
Strongly Powered by AbleSci AI