亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Relationship between the superelasticity and strain field around Ni4Ti3 nano-precipitates in NiTi shape memory alloy via laser powder bed fusion

假弹性 材料科学 形状记忆合金 钛镍合金 合金 融合 纳米- 冶金 复合材料 马氏体 微观结构 语言学 哲学
作者
Ying Yang,Y.Q. Zhang,H.Z. Lu,Yang Luo,Tong Long,Weiping Tong,Yonggang Zhang,Xiaoyang Yu,Chao Yang
出处
期刊:Journal of Manufacturing Processes [Elsevier BV]
卷期号:127: 698-708
标识
DOI:10.1016/j.jmapro.2024.08.023
摘要

Although the simulation results had demonstrated that the strain field introduced by Ni4Ti3 nano-precipitates in NiTi shape memory alloys (SMAs) was related with their superelasticity inherently, the corresponding experimental result was rarely documented heretofore, especially in additive manufactured NiTi SMAs. In this work, we tailor the morphologies and resultant strain field of Ni4Ti3 nano-precipitates by heat treatment of a NiTi SMA subjected to laser powder bed fusion (LPBF), and further authenticate relationship between the superelasticity and the strain field in the LPBF NiTi samples. When holding times were 1 h, 3 h, and 5 h at aging temperature of 350 °C after solution treatment, the Ni4Ti3 nano-precipitates in the LPBF NiTi samples exhibit spherical, ellipsoidal, and lenticular morphologies, respectively. Accordingly, the strain field around Ni4Ti3 nano-precipitates in B2 matrix decrease from 0.15 % to 0.13 % and 0.10 %, respectively. The LPBF and aged NiTi samples present large superelasticity, which exceeds 6 % recovery strain together with high recovery rate of ˃99 % during 10-times cyclic compression loading. Interestingly, the LPBF and aged sample with the spherical Ni4Ti3 and highest strain field displays the worst superelasticity stability, while the one with the lenticular Ni4Ti3 and smallest strain field exhibits the relatively stable and biggest superelasticity of 6.36 %. Basically, this is attributed to different mechanisms between the Ni4Ti3 nano-precipitates and dislocations generated during cyclic loading, which is induced by different interfaces between the Ni4Ti3 and B2 matrix in the three types of the NiTi samples. For the sample with the highest strain field, its spherical Ni4Ti3 was cut through by generated dislocations due to coherent interface between the spherical Ni4Ti3 and B2 matrix. In contrast, the one with the smallest strain field, its lenticular Ni4Ti3 can impede effectively generated dislocations because of semi-coherent or non-coherent interface between the lenticular Ni4Ti3 and B2 matrix. Therefore, these results can provide meaningful insights into tailoring the nano-precipitates and thereby obtaining excellent superelasticity of NiTi SMAs by LPBF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有机卡拉米完成签到,获得积分10
7秒前
23秒前
phter完成签到,获得积分10
30秒前
加菲丰丰应助科研通管家采纳,获得10
1分钟前
1分钟前
Andy.发布了新的文献求助10
1分钟前
Andy.完成签到,获得积分10
1分钟前
走啊走完成签到,获得积分10
1分钟前
1分钟前
哈牛柚子鹿完成签到,获得积分10
1分钟前
子春二杦发布了新的文献求助10
1分钟前
斯文败类应助飞快的孱采纳,获得10
1分钟前
2分钟前
科目三应助走啊走采纳,获得10
2分钟前
哈哈哈发布了新的文献求助30
2分钟前
yyy发布了新的文献求助10
2分钟前
1947188918完成签到,获得积分10
2分钟前
阿鑫完成签到 ,获得积分10
2分钟前
子春二杦完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
上官若男应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
加菲丰丰应助科研通管家采纳,获得10
3分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
yyy完成签到,获得积分10
3分钟前
nn发布了新的文献求助10
3分钟前
3分钟前
nn完成签到,获得积分10
3分钟前
3分钟前
走啊走发布了新的文献求助10
3分钟前
陨落星辰完成签到 ,获得积分10
4分钟前
酷波er应助方彧采纳,获得30
4分钟前
哈哈哈完成签到,获得积分10
4分钟前
wbs13521完成签到,获得积分0
4分钟前
小蘑菇应助飞快的孱采纳,获得10
4分钟前
5分钟前
Y3611应助科小白采纳,获得10
5分钟前
5分钟前
方彧发布了新的文献求助30
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4626209
求助须知:如何正确求助?哪些是违规求助? 4025196
关于积分的说明 12458497
捐赠科研通 3710447
什么是DOI,文献DOI怎么找? 2046620
邀请新用户注册赠送积分活动 1078607
科研通“疑难数据库(出版商)”最低求助积分说明 961058