Evaluation of seedless wavelet-based optical flow velocimetry for schlieren images

物理 测速 小波 粒子图像测速 纹影 光学 流动可视化 流量(数学) 机械 湍流 计算机视觉 计算机科学
作者
Mingjia Chen,Zhixin Zhao,Yangyang Hou,Jiajian Zhu,Mingbo Sun,Bo Zhou
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (7)
标识
DOI:10.1063/5.0208692
摘要

In harsh flow environments, traditional particle-based velocimetry methods face challenges. This study explores the use of seedless schlieren images for velocimetry through a novel algorithm, namely, wavelet-based optical flow velocimetry (wOFV). Various data term constraints for wOFV were examined. It is found that the data term derived from the integrated continuity equation (ICE) outperformed the conventional displaced frame difference constraint and the schlieren-tailored constraints (SE and SSE). Evaluation based on the root mean square error (RMSE) and turbulence energy spectrum (TES) reveals that the choice of wavelet becomes insignificant for the optimal estimated velocity field when the wavelet support length is sufficiently long. In addition, the implementation of a proper truncation in wOFV shows little dependence of the RMSE on the weighting coefficient, therefore alleviating the uncertainty associated with selecting an appropriate weighting coefficient. It is found that the retrieved flow field from schlieren images approximates a down-sampled result based on available structural scales in images. Considering the prevalence of under-resolved velocity field in practical applications, schlieren-based wOFV offers a reasonable alternative to particle-based velocimetry, particularly in harsh flow environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助BaekHyun采纳,获得10
1秒前
peng发布了新的文献求助10
1秒前
1秒前
2秒前
科研通AI5应助孔小白采纳,获得10
3秒前
3秒前
舒适逊完成签到 ,获得积分10
3秒前
科研通AI5应助11111采纳,获得10
4秒前
CipherSage应助hxn采纳,获得10
4秒前
6秒前
深情安青应助shatang采纳,获得10
6秒前
zxx5012发布了新的文献求助10
6秒前
芥丶子完成签到,获得积分10
7秒前
曾开心完成签到,获得积分10
7秒前
平淡南霜发布了新的文献求助10
7秒前
Blue_Pig发布了新的文献求助10
8秒前
李健的小迷弟应助逐风采纳,获得30
8秒前
yatou5651发布了新的文献求助10
9秒前
Akim应助和谐乌龟采纳,获得10
9秒前
peng完成签到,获得积分20
10秒前
CipherSage应助汉关采纳,获得10
10秒前
11秒前
11秒前
11秒前
丘比特应助XM采纳,获得10
11秒前
bkagyin应助Blue_Pig采纳,获得10
12秒前
13秒前
14秒前
14秒前
完美世界应助加油加油采纳,获得10
15秒前
15秒前
16秒前
ns发布了新的文献求助30
18秒前
11111发布了新的文献求助10
18秒前
19秒前
药学牛马完成签到,获得积分10
19秒前
张zi发布了新的文献求助10
20秒前
yatou5651发布了新的文献求助10
21秒前
21秒前
小魏不学无术完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808