已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Model-Free Approach for Solving Choice-Based Competitive Facility Location Problems Using Simulation and Submodularity

计算机科学 设施选址问题 数学优化 运筹学 数学
作者
Robin Legault,Emma Frejinger
出处
期刊:Informs Journal on Computing 被引量:5
标识
DOI:10.1287/ijoc.2023.0280
摘要

This paper considers facility location problems in which a firm entering a market seeks to open facilities on a subset of candidate locations so as to maximize its expected market share, assuming that customers choose the available alternative that maximizes a random utility function. We introduce a deterministic equivalent reformulation of this stochastic problem as a maximum covering location problem with an exponential number of demand points, each of which is covered by a different set of candidate locations. Estimating the prevalence of these preference profiles through simulation generalizes a sample average approximation method from the literature and results in a maximum covering location problem of manageable size. To solve it, we develop a partial Benders reformulation in which the contribution to the objective of the least influential preference profiles is aggregated and bounded by submodular cuts. This set of profiles is selected by a knee detection method that seeks to identify the best tradeoff between the fraction of the demand that is retained in the master problem and the size of the model. We develop a theoretical analysis of our approach and show that the solution quality it provides for the original stochastic problem, its computational performance, and the automatic profile-retention strategy it exploits are directly connected to the entropy of the preference profiles in the population. Computational experiments on existing and new benchmark sets indicate that our approach dominates the classical sample average approximation method on large instances of the competitive facility location problem, can outperform the best heuristic method from the literature under the multinomial logit model, and achieves state-of-the-art results under the mixed multinomial logit model. We characterize a broader class of problems, which includes assortment optimization, to which the solving methodology and the analyses developed in this paper can be extended. History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms—Discrete. Funding: This research was supported by Fonds de Recherche du Québec-Nature et Technologies and Institut de Valorisation des Données through scholarships to R. Legault. E. Frejinger was partially supported by the Canada Research Chair program [Grant 950-232244]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/ijoc.2023.0280 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
张欢完成签到,获得积分10
2秒前
麦芽发布了新的文献求助10
2秒前
3秒前
4秒前
6秒前
8秒前
zhb1998发布了新的文献求助10
8秒前
木小叶发布了新的文献求助10
9秒前
贝妮戴塔发布了新的文献求助20
10秒前
LLL发布了新的文献求助10
10秒前
star应助小么小采纳,获得10
10秒前
丘比特应助夏依瑶采纳,获得30
11秒前
乙酰水杨酸完成签到,获得积分10
12秒前
TIPHA发布了新的文献求助10
14秒前
15秒前
18秒前
蒋蒋蒋蒋发布了新的文献求助10
18秒前
幸福的含灵完成签到,获得积分10
18秒前
20秒前
深情安青应助陈益凡采纳,获得10
20秒前
20秒前
linda完成签到,获得积分10
20秒前
桐桐应助完美外绣采纳,获得10
21秒前
21秒前
充电宝应助TIPHA采纳,获得10
21秒前
大个应助XIAO QIANG采纳,获得30
21秒前
23秒前
24秒前
万能图书馆应助烟消云散采纳,获得10
25秒前
linda发布了新的文献求助10
25秒前
青年才俊发布了新的文献求助10
26秒前
爆米花应助麦芽采纳,获得10
26秒前
28秒前
29秒前
jasonjiang完成签到 ,获得积分0
30秒前
31秒前
32秒前
Q哈哈哈发布了新的文献求助10
33秒前
酷波er应助linda采纳,获得30
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5090076
求助须知:如何正确求助?哪些是违规求助? 4304701
关于积分的说明 13414655
捐赠科研通 4130369
什么是DOI,文献DOI怎么找? 2262239
邀请新用户注册赠送积分活动 1266168
关于科研通互助平台的介绍 1200858