Application of Machine Learning Models to Predict Recurrence After Surgical Resection of Nonmetastatic Renal Cell Carcinoma

医学 四分位间距 肾细胞癌 肾切除术 布里氏评分 一致性 肾透明细胞癌 队列 内科学 外科 肿瘤科 泌尿科 机器学习 计算机科学
作者
Z. Khene,Pierre Bigot,N. Doumerc,I. Ouzaïd,R. Boissier,François‐Xavier Nouhaud,Laurence Albigès,Jean‐Christophe Bernhard,Alexandre Ingels,Delphine Borchiellini,Solène Kammerer‐Jacquet,Nathalie Rioux‐Leclercq,Morgan Rouprêt,Oscar Acosta,R. de Crevoisier,Karim Bensalah,G. Pignot,Y. Ahallal,C. Lebâcle,Arnaud Méjean
出处
期刊:European Urology Oncology [Elsevier]
卷期号:6 (3): 323-330 被引量:34
标识
DOI:10.1016/j.euo.2022.07.007
摘要

Predictive tools can be useful for adapting surveillance or including patients in adjuvant trials after surgical resection of nonmetastatic renal cell carcinoma (RCC). Current models have been built using traditional statistical modelling and prespecified variables, which limits their performance. To investigate the performance of machine learning (ML) framework to predict recurrence after RCC surgery and compare them with current validated models. In this observational study, we derived and tested several ML-based models (Random Survival Forests [RSF], Survival Support Vector Machines [S-SVM], and Extreme Gradient Boosting [XG boost]) to predict recurrence of patients who underwent radical or partial nephrectomy for a nonmetastatic RCC, between 2013 and 2020, at 21 French medical centres. The primary end point was disease-free survival. Model discrimination was assessed using the concordance index (c-index), and calibration was assessed using the Brier score. ML models were compared with four conventional prognostic models, using decision curve analysis (DCA). A total of 4067 patients were included in this study (3253 in the development cohort and 814 in the validation cohort). Most tumours (69%) were clear cell RCC, 40% were of high grade (nuclear International Society of Urological Pathology grade 3 or 4), and 24% had necrosis. Of the patients, 4% had nodal involvement. After a median follow-up of 57 mo (interquartile range 29–76), 523 (13%) patients recurred. ML models obtained higher c-index values than conventional models. The RSF yielded the highest c-index values (0.794), followed by S-SVM (c-index 0.784) and XG boost (c-index 0.782). In addition, all models showed good calibration with low integrated Brier scores (all integrated brier scores <0.1). However, we found calibration drift over time for all models, albeit with a smaller magnitude for ML models. Finally, DCA showed an incremental net benefit from all ML models compared with conventional models currently used in practice. Applying ML approaches to predict recurrence following surgical resection of RCC resulted in better prediction than that of current validated models available in clinical practice. However, there is still room for improvement, which may come from the integration of novel biological and/or imaging biomarkers. We found that artificial intelligence algorithms could better predict the risk of recurrence after surgery for a localised kidney cancer. These algorithms may help better select patients who will benefit from medical treatment after surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
will发布了新的文献求助200
1秒前
sophicey发布了新的文献求助10
1秒前
1秒前
1秒前
Suttier发布了新的文献求助10
2秒前
Lucas应助整齐的访梦采纳,获得10
2秒前
2秒前
lhy发布了新的文献求助10
2秒前
3秒前
小落看不完完成签到,获得积分10
3秒前
Dave发布了新的文献求助10
3秒前
大胆诗云发布了新的文献求助10
3秒前
蓝蓝发布了新的文献求助10
4秒前
大肚肚不怕凉完成签到,获得积分10
4秒前
汪筱喵完成签到,获得积分10
4秒前
蓝橙发布了新的文献求助10
4秒前
云汐儿完成签到,获得积分10
4秒前
上上谦完成签到,获得积分10
4秒前
yooooooo完成签到,获得积分10
5秒前
5秒前
fandada发布了新的文献求助10
5秒前
nanoyy发布了新的文献求助10
5秒前
喜悦的依琴完成签到,获得积分10
6秒前
ZYQ发布了新的文献求助10
6秒前
星辰大海应助北冥鱼采纳,获得10
6秒前
Boxcc发布了新的文献求助10
6秒前
ghhhhhh完成签到,获得积分10
6秒前
刘海杨完成签到,获得积分20
7秒前
7秒前
王一一发布了新的文献求助10
7秒前
科研通AI6应助羊羊杨采纳,获得10
7秒前
yanyan发布了新的文献求助10
7秒前
8秒前
俭朴的寇完成签到,获得积分10
8秒前
8秒前
科研通AI6应助儒雅龙采纳,获得10
8秒前
feiniupan完成签到,获得积分10
8秒前
Owen应助addr采纳,获得10
9秒前
ao发布了新的文献求助10
10秒前
echo发布了新的文献求助20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506056
求助须知:如何正确求助?哪些是违规求助? 4601542
关于积分的说明 14477374
捐赠科研通 4535544
什么是DOI,文献DOI怎么找? 2485440
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440887