已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Application of Machine Learning Models to Predict Recurrence After Surgical Resection of Nonmetastatic Renal Cell Carcinoma

医学 四分位间距 肾细胞癌 肾切除术 布里氏评分 一致性 肾透明细胞癌 队列 内科学 外科 肿瘤科 泌尿科 机器学习 计算机科学
作者
Z. Khene,P. Bigot,N. Doumerc,I. Ouzaïd,R. Boissier,François‐Xavier Nouhaud,Laurence Albigès,Jean‐Christophe Bernhard,Alexandre Ingels,Delphine Borchiellini,Solène Kammerer‐Jacquet,Nathalie Rioux‐Leclercq,Morgan Rouprêt,Oscar Acosta,R. de Crevoisier,Karim Bensalah,G. Pignot,Y. Ahallal,C. Lebâcle,Arnaud Méjean,Jean‐Alexandre Long,X. Tillou,Jonathan Olivier,F. Bruyère,T. Charles,Xavier Durand,Hervé Lang,S. Larré
出处
期刊:European Urology Oncology [Elsevier]
卷期号:6 (3): 323-330 被引量:23
标识
DOI:10.1016/j.euo.2022.07.007
摘要

Predictive tools can be useful for adapting surveillance or including patients in adjuvant trials after surgical resection of nonmetastatic renal cell carcinoma (RCC). Current models have been built using traditional statistical modelling and prespecified variables, which limits their performance. To investigate the performance of machine learning (ML) framework to predict recurrence after RCC surgery and compare them with current validated models. In this observational study, we derived and tested several ML-based models (Random Survival Forests [RSF], Survival Support Vector Machines [S-SVM], and Extreme Gradient Boosting [XG boost]) to predict recurrence of patients who underwent radical or partial nephrectomy for a nonmetastatic RCC, between 2013 and 2020, at 21 French medical centres. The primary end point was disease-free survival. Model discrimination was assessed using the concordance index (c-index), and calibration was assessed using the Brier score. ML models were compared with four conventional prognostic models, using decision curve analysis (DCA). A total of 4067 patients were included in this study (3253 in the development cohort and 814 in the validation cohort). Most tumours (69%) were clear cell RCC, 40% were of high grade (nuclear International Society of Urological Pathology grade 3 or 4), and 24% had necrosis. Of the patients, 4% had nodal involvement. After a median follow-up of 57 mo (interquartile range 29–76), 523 (13%) patients recurred. ML models obtained higher c-index values than conventional models. The RSF yielded the highest c-index values (0.794), followed by S-SVM (c-index 0.784) and XG boost (c-index 0.782). In addition, all models showed good calibration with low integrated Brier scores (all integrated brier scores <0.1). However, we found calibration drift over time for all models, albeit with a smaller magnitude for ML models. Finally, DCA showed an incremental net benefit from all ML models compared with conventional models currently used in practice. Applying ML approaches to predict recurrence following surgical resection of RCC resulted in better prediction than that of current validated models available in clinical practice. However, there is still room for improvement, which may come from the integration of novel biological and/or imaging biomarkers. We found that artificial intelligence algorithms could better predict the risk of recurrence after surgery for a localised kidney cancer. These algorithms may help better select patients who will benefit from medical treatment after surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
always发布了新的文献求助10
1秒前
Persist6578完成签到 ,获得积分10
2秒前
三冬四夏发布了新的文献求助10
3秒前
4秒前
丸子完成签到 ,获得积分10
4秒前
共享精神应助吐槽君采纳,获得10
7秒前
8秒前
9秒前
10秒前
空空糯米团完成签到 ,获得积分10
11秒前
薯条狂热爱好者完成签到 ,获得积分10
12秒前
yangzai完成签到 ,获得积分10
15秒前
花椒鱼完成签到 ,获得积分10
18秒前
zxr完成签到 ,获得积分10
20秒前
111关注了科研通微信公众号
21秒前
avaig完成签到 ,获得积分10
22秒前
张磊发布了新的文献求助10
25秒前
搜集达人应助缓慢墨镜采纳,获得10
27秒前
三冬四夏完成签到 ,获得积分10
31秒前
Serena510完成签到 ,获得积分10
33秒前
111发布了新的文献求助10
36秒前
缓慢墨镜完成签到,获得积分20
37秒前
科研通AI2S应助坚定的路人采纳,获得10
40秒前
研友_VZG7GZ应助科研通管家采纳,获得10
41秒前
田様应助科研通管家采纳,获得10
42秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
共享精神应助科研通管家采纳,获得10
42秒前
42秒前
李健的小迷弟应助yyy_yyy采纳,获得10
45秒前
Owen应助hh采纳,获得10
46秒前
Ziyi完成签到 ,获得积分10
48秒前
iorpi完成签到,获得积分10
50秒前
完美世界应助海棠采纳,获得10
51秒前
55秒前
1分钟前
1分钟前
1分钟前
hazardatom完成签到 ,获得积分10
1分钟前
愉快铃铛发布了新的文献求助30
1分钟前
壮观烧鹅完成签到 ,获得积分10
1分钟前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3213078
求助须知:如何正确求助?哪些是违规求助? 2861888
关于积分的说明 8130856
捐赠科研通 2527823
什么是DOI,文献DOI怎么找? 1361707
科研通“疑难数据库(出版商)”最低求助积分说明 643516
邀请新用户注册赠送积分活动 615849