亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of Machine Learning Models to Predict Recurrence After Surgical Resection of Nonmetastatic Renal Cell Carcinoma

医学 四分位间距 肾细胞癌 肾切除术 布里氏评分 一致性 肾透明细胞癌 队列 内科学 外科 肿瘤科 泌尿科 机器学习 计算机科学
作者
Z. Khene,Pierre Bigot,N. Doumerc,I. Ouzaïd,R. Boissier,François‐Xavier Nouhaud,Laurence Albigès,Jean‐Christophe Bernhard,Alexandre Ingels,Delphine Borchiellini,Solène Kammerer‐Jacquet,Nathalie Rioux‐Leclercq,Morgan Rouprêt,Oscar Acosta,R. de Crevoisier,Karim Bensalah,G. Pignot,Y. Ahallal,C. Lebâcle,Arnaud Méjean
出处
期刊:European Urology Oncology [Elsevier BV]
卷期号:6 (3): 323-330 被引量:31
标识
DOI:10.1016/j.euo.2022.07.007
摘要

Predictive tools can be useful for adapting surveillance or including patients in adjuvant trials after surgical resection of nonmetastatic renal cell carcinoma (RCC). Current models have been built using traditional statistical modelling and prespecified variables, which limits their performance. To investigate the performance of machine learning (ML) framework to predict recurrence after RCC surgery and compare them with current validated models. In this observational study, we derived and tested several ML-based models (Random Survival Forests [RSF], Survival Support Vector Machines [S-SVM], and Extreme Gradient Boosting [XG boost]) to predict recurrence of patients who underwent radical or partial nephrectomy for a nonmetastatic RCC, between 2013 and 2020, at 21 French medical centres. The primary end point was disease-free survival. Model discrimination was assessed using the concordance index (c-index), and calibration was assessed using the Brier score. ML models were compared with four conventional prognostic models, using decision curve analysis (DCA). A total of 4067 patients were included in this study (3253 in the development cohort and 814 in the validation cohort). Most tumours (69%) were clear cell RCC, 40% were of high grade (nuclear International Society of Urological Pathology grade 3 or 4), and 24% had necrosis. Of the patients, 4% had nodal involvement. After a median follow-up of 57 mo (interquartile range 29–76), 523 (13%) patients recurred. ML models obtained higher c-index values than conventional models. The RSF yielded the highest c-index values (0.794), followed by S-SVM (c-index 0.784) and XG boost (c-index 0.782). In addition, all models showed good calibration with low integrated Brier scores (all integrated brier scores <0.1). However, we found calibration drift over time for all models, albeit with a smaller magnitude for ML models. Finally, DCA showed an incremental net benefit from all ML models compared with conventional models currently used in practice. Applying ML approaches to predict recurrence following surgical resection of RCC resulted in better prediction than that of current validated models available in clinical practice. However, there is still room for improvement, which may come from the integration of novel biological and/or imaging biomarkers. We found that artificial intelligence algorithms could better predict the risk of recurrence after surgery for a localised kidney cancer. These algorithms may help better select patients who will benefit from medical treatment after surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得30
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
26秒前
杪夏二八完成签到 ,获得积分10
1分钟前
souther完成签到,获得积分0
1分钟前
乐乐应助Akitten采纳,获得10
1分钟前
1分钟前
kangkang发布了新的文献求助10
1分钟前
传奇完成签到 ,获得积分10
2分钟前
jyy关闭了jyy文献求助
2分钟前
丘比特应助怕孤单的思雁采纳,获得10
2分钟前
2分钟前
2分钟前
Akitten发布了新的文献求助10
2分钟前
3分钟前
Li完成签到,获得积分10
3分钟前
3分钟前
自然的衫完成签到 ,获得积分10
3分钟前
3分钟前
阿巴阿巴茶完成签到,获得积分10
4分钟前
lhy发布了新的文献求助10
4分钟前
CipherSage应助科研通管家采纳,获得10
4分钟前
资白玉完成签到 ,获得积分0
4分钟前
华仔应助Akitten采纳,获得10
5分钟前
上官若男应助紫色奶萨采纳,获得10
6分钟前
老石完成签到 ,获得积分10
6分钟前
NexusExplorer应助科研通管家采纳,获得10
6分钟前
6分钟前
紫色奶萨发布了新的文献求助10
6分钟前
紫色奶萨完成签到,获得积分10
6分钟前
华仔应助怕孤单的思雁采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
Akitten发布了新的文献求助10
6分钟前
SYLH应助怕孤单的思雁采纳,获得10
6分钟前
6分钟前
科研小白完成签到 ,获得积分10
7分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990298
求助须知:如何正确求助?哪些是违规求助? 3532146
关于积分的说明 11256481
捐赠科研通 3271042
什么是DOI,文献DOI怎么找? 1805197
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234