Research on Named Entity Recognition Based on Multi-Task Learning and Biaffine Mechanism

计算机科学 任务(项目管理) 命名实体识别 人工智能 背景(考古学) 召回 光学(聚焦) 代表(政治) 自然语言处理 机制(生物学) 机器学习 跨度(工程) 班级(哲学) 边界(拓扑) 航程(航空) 模式识别(心理学) 数学 法学 政治学 语言学 生物 政治 认识论 光学 物理 工程类 古生物学 材料科学 数学分析 管理 经济 复合材料 哲学 土木工程
作者
Wenchao Gao,Yu Li,Xiaole Guan,Shiyu Chen,Shanshan Zhao
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Limited]
卷期号:2022: 1-11 被引量:6
标识
DOI:10.1155/2022/2687615
摘要

Commonly used nested entity recognition methods are span-based entity recognition methods, which focus on learning the head and tail representations of entities. This method lacks obvious boundary supervision, which leads to the failure of the correct candidate entities to be predicted, resulting in the problem of high precision and low recall. To solve the above problems, this paper proposes a named entity recognition method based on multi-task learning and biaffine mechanism, introduces the idea of multi-task learning, and divides the task into two subtasks, entity span classification and boundary detection. The entity span classification task uses biaffine mechanism to score the resulting spans and select the most likely entity class. The boundary detection task mainly solves the problem of low recall caused by the lack of boundary supervision in span classification. It captures the relationship between adjacent words in the input text according to the context, indicates the boundary range of entities, and enhances the span representation through additional boundary supervision. The experimental results show that the named entity recognition method based on multi-task learning and biaffine mechanism can improve the F1 value by up to 7.05%, 12.63%, and 14.68% on the GENIA, ACE2004, and ACE2005 nested datasets compared with other methods, which verifies that this method has better performance on the nested entity recognition task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归尘应助sunburst采纳,获得30
1秒前
哚圆圆完成签到,获得积分20
1秒前
mraze发布了新的文献求助10
2秒前
深情安青应助圣诞节采纳,获得10
2秒前
2秒前
paobashan发布了新的文献求助30
3秒前
虚幻唯雪完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
哚圆圆发布了新的文献求助10
4秒前
5秒前
tianquanbi发布了新的文献求助10
5秒前
李爱国应助eywct采纳,获得10
5秒前
6秒前
6秒前
CipherSage应助熊国开采纳,获得10
6秒前
Sweet完成签到 ,获得积分10
6秒前
gzslwddhjx发布了新的文献求助10
7秒前
Islet发布了新的文献求助10
7秒前
8秒前
8秒前
李爱国应助王雪儿哈哈哈采纳,获得10
9秒前
SciGPT应助llll采纳,获得10
9秒前
11秒前
11秒前
11秒前
11秒前
晚上吃什么完成签到,获得积分10
11秒前
ChemMa发布了新的文献求助10
12秒前
丫丫发布了新的文献求助10
12秒前
易安发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
笨笨忘幽发布了新的文献求助10
14秒前
窦文涛完成签到,获得积分10
14秒前
14秒前
完美世界应助liuying采纳,获得10
15秒前
16秒前
THJJ完成签到,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300