Optimal couple-group tracking control for the heterogeneous multi-agent systems with cooperative-competitive interactions via reinforcement learning method

强化学习 计算机科学 群(周期表) 跟踪(教育) 多智能体系统 控制(管理) 钢筋 人工智能 分布式计算 心理学 社会心理学 化学 教育学 有机化学
作者
Jun Li,Lianghao Ji,Cuijuan Zhang,Huaqing Li
出处
期刊:Information Sciences [Elsevier]
卷期号:610: 401-424 被引量:9
标识
DOI:10.1016/j.ins.2022.07.181
摘要

In this paper, we study a class of optimal couple-group tracking control (OCGTC) problems for heterogeneous multi-agent systems (HeMASs) based on reinforcement learning (RL) method, whose goal is to minimize the local tracking errors (states) and control inputs (actions) of followers by learning the dynamic knowledge of a single leader. The weakly connected multi-agent network is randomly divided into coupled sub-networks, and each agent in the same sub-network cooperates to accomplish tracking control such that the positions and velocities of all the agents converge to the same value, while the agents from different subgroups compete with each other to dissimilar tracking goals. In particular, in the discussed HeMASs, we consider agents with unknown dynamics of first-order and second-order. To solve the algebraic Riccati equation (ARE), an policy-value-based actor-critic technique is applied. Using the Lyapunov-like theorem, we verify that the local tracking error and the estimated weights of actor-critic neural networks are deduced to be uniformly ultimately bounded. Eventually, several simulations demonstrate the correctness of the retrieved theoretical results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助科研通管家采纳,获得10
刚刚
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
刚刚
YsGao应助科研通管家采纳,获得10
刚刚
李爱国应助科研通管家采纳,获得10
刚刚
andou应助科研通管家采纳,获得10
刚刚
ccm应助科研通管家采纳,获得10
刚刚
Dali应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
PJJJ发布了新的文献求助10
刚刚
1秒前
高高的平蓝应助helitrope采纳,获得100
1秒前
甘乐完成签到 ,获得积分10
3秒前
科研通AI6应助rei402采纳,获得10
4秒前
孙博发布了新的文献求助10
5秒前
酶切完成签到,获得积分10
5秒前
5秒前
Owen应助血绣采纳,获得10
7秒前
9秒前
9秒前
Orange应助枕星采纳,获得10
9秒前
li完成签到,获得积分10
10秒前
CodeCraft应助积极擎汉采纳,获得10
10秒前
11秒前
费劲来到这的Rua完成签到,获得积分10
11秒前
曼珠沙华发布了新的文献求助10
12秒前
worrysyx完成签到,获得积分10
14秒前
huihui发布了新的文献求助10
14秒前
星辰大海应助sasa采纳,获得10
15秒前
17秒前
17秒前
18秒前
拉长的问晴完成签到,获得积分10
18秒前
科研通AI6应助坚果采纳,获得30
18秒前
王冠男完成签到,获得积分10
19秒前
19秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588492
求助须知:如何正确求助?哪些是违规求助? 4671582
关于积分的说明 14787884
捐赠科研通 4625454
什么是DOI,文献DOI怎么找? 2531836
邀请新用户注册赠送积分活动 1500428
关于科研通互助平台的介绍 1468314