亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A hybrid hemodynamic knowledge-powered and feature reconstruction-guided scheme for breast cancer segmentation based on DCE-MRI

计算机科学 人工智能 分割 体素 模式识别(心理学) 特征(语言学) 杠杆(统计) 乳腺癌 乳房磁振造影 动态增强MRI 磁共振成像 计算机视觉 癌症 放射科 乳腺摄影术 医学 哲学 内科学 语言学
作者
Tianxu Lv,Youqing Wu,Yihang Wang,Yuan Liu,Lihua Li,Chu‐Xia Deng,Xiang Pan
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:82: 102572-102572 被引量:9
标识
DOI:10.1016/j.media.2022.102572
摘要

Automatically and accurately annotating tumor in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), which provides a noninvasive in vivo method to evaluate tumor vasculature architectures based on contrast accumulation and washout, is a crucial step in computer-aided breast cancer diagnosis and treatment. However, it remains challenging due to the varying sizes, shapes, appearances and densities of tumors caused by the high heterogeneity of breast cancer, and the high dimensionality and ill-posed artifacts of DCE-MRI. In this paper, we propose a hybrid hemodynamic knowledge-powered and feature reconstruction-guided scheme that integrates pharmacokinetics prior and feature refinement to generate sufficiently adequate features in DCE-MRI for breast cancer segmentation. The pharmacokinetics prior expressed by time intensity curve (TIC) is incorporated into the scheme through objective function called dynamic contrast-enhanced prior (DCP) loss. It contains contrast agent kinetic heterogeneity prior knowledge, which is important to optimize our model parameters. Besides, we design a spatial fusion module (SFM) embedded in the scheme to exploit intra-slices spatial structural correlations, and deploy a spatial-kinetic fusion module (SKFM) to effectively leverage the complementary information extracted from spatial-kinetic space. Furthermore, considering that low spatial resolution often leads to poor image quality in DCE-MRI, we integrate a reconstruction autoencoder into the scheme to refine feature maps in an unsupervised manner. We conduct extensive experiments to validate the proposed method and show that our approach can outperform recent state-of-the-art segmentation methods on breast cancer DCE-MRI dataset. Moreover, to explore the generalization for other segmentation tasks on dynamic imaging, we also extend the proposed method to brain segmentation in DSC-MRI sequence. Our source code will be released on https://github.com/AI-medical-diagnosis-team-of-JNU/DCEDuDoFNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
恰知发布了新的文献求助30
2秒前
eritinn发布了新的文献求助10
6秒前
张张爱科研完成签到,获得积分10
6秒前
sunce1990完成签到 ,获得积分10
11秒前
11秒前
海峰完成签到,获得积分10
14秒前
15秒前
百里守约完成签到 ,获得积分10
16秒前
汉堡包应助恰知采纳,获得10
18秒前
eritinn完成签到,获得积分10
27秒前
小地蛋完成签到 ,获得积分10
29秒前
甜蜜的翠柏完成签到,获得积分10
33秒前
心灵美鑫完成签到 ,获得积分10
40秒前
朱文韬发布了新的文献求助10
40秒前
机灵的忆梅完成签到 ,获得积分10
41秒前
传奇3应助青山采纳,获得10
41秒前
口外彭于晏完成签到,获得积分10
45秒前
提拉米草完成签到,获得积分10
50秒前
朱文韬完成签到,获得积分10
50秒前
旺仔发布了新的文献求助10
53秒前
ewmmel完成签到 ,获得积分10
56秒前
59秒前
1分钟前
1分钟前
思源应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
艾艾应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
jyy应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
KID发布了新的文献求助10
1分钟前
恰知完成签到,获得积分10
1分钟前
平淡道天完成签到,获得积分10
1分钟前
紫色翡翠完成签到,获得积分10
1分钟前
KID完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Owen应助插座采纳,获得10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960024
求助须知:如何正确求助?哪些是违规求助? 3506241
关于积分的说明 11128439
捐赠科研通 3238225
什么是DOI,文献DOI怎么找? 1789585
邀请新用户注册赠送积分活动 871829
科研通“疑难数据库(出版商)”最低求助积分说明 803056