A hybrid hemodynamic knowledge-powered and feature reconstruction-guided scheme for breast cancer segmentation based on DCE-MRI

计算机科学 人工智能 分割 体素 模式识别(心理学) 特征(语言学) 杠杆(统计) 乳腺癌 乳房磁振造影 动态增强MRI 磁共振成像 计算机视觉 癌症 放射科 乳腺摄影术 医学 哲学 内科学 语言学
作者
Tianxu Lv,Youqing Wu,Yihang Wang,Yuan Liu,Lihua Li,Chu‐Xia Deng,Xiang Pan
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:82: 102572-102572 被引量:9
标识
DOI:10.1016/j.media.2022.102572
摘要

Automatically and accurately annotating tumor in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), which provides a noninvasive in vivo method to evaluate tumor vasculature architectures based on contrast accumulation and washout, is a crucial step in computer-aided breast cancer diagnosis and treatment. However, it remains challenging due to the varying sizes, shapes, appearances and densities of tumors caused by the high heterogeneity of breast cancer, and the high dimensionality and ill-posed artifacts of DCE-MRI. In this paper, we propose a hybrid hemodynamic knowledge-powered and feature reconstruction-guided scheme that integrates pharmacokinetics prior and feature refinement to generate sufficiently adequate features in DCE-MRI for breast cancer segmentation. The pharmacokinetics prior expressed by time intensity curve (TIC) is incorporated into the scheme through objective function called dynamic contrast-enhanced prior (DCP) loss. It contains contrast agent kinetic heterogeneity prior knowledge, which is important to optimize our model parameters. Besides, we design a spatial fusion module (SFM) embedded in the scheme to exploit intra-slices spatial structural correlations, and deploy a spatial-kinetic fusion module (SKFM) to effectively leverage the complementary information extracted from spatial-kinetic space. Furthermore, considering that low spatial resolution often leads to poor image quality in DCE-MRI, we integrate a reconstruction autoencoder into the scheme to refine feature maps in an unsupervised manner. We conduct extensive experiments to validate the proposed method and show that our approach can outperform recent state-of-the-art segmentation methods on breast cancer DCE-MRI dataset. Moreover, to explore the generalization for other segmentation tasks on dynamic imaging, we also extend the proposed method to brain segmentation in DSC-MRI sequence. Our source code will be released on https://github.com/AI-medical-diagnosis-team-of-JNU/DCEDuDoFNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
成就心锁完成签到 ,获得积分10
1秒前
qiqi7788完成签到,获得积分20
1秒前
2秒前
球球你了我真的很需要这篇文章完成签到,获得积分10
2秒前
ding完成签到,获得积分10
3秒前
苏苏完成签到,获得积分10
3秒前
3秒前
Ming发布了新的文献求助10
4秒前
科研通AI5应助爱狗先森采纳,获得10
4秒前
几一昂发布了新的文献求助10
4秒前
殷启维发布了新的文献求助10
4秒前
5秒前
汉堡包应助噜啦啦采纳,获得10
5秒前
6秒前
6秒前
朝槿完成签到 ,获得积分10
6秒前
Clarence发布了新的文献求助10
7秒前
神勇小笼包完成签到,获得积分10
7秒前
CodeCraft应助小雨采纳,获得10
7秒前
充电宝应助能量球采纳,获得10
8秒前
GangHuang发布了新的文献求助10
9秒前
深情安青应助hkh采纳,获得10
11秒前
真实的火车完成签到,获得积分10
12秒前
爱狗先森完成签到,获得积分10
13秒前
13秒前
Dean应助谨慎采白采纳,获得50
13秒前
zhang完成签到,获得积分10
13秒前
13秒前
永曼完成签到,获得积分10
14秒前
16秒前
liukanhai完成签到,获得积分10
17秒前
17秒前
小乔同学发布了新的文献求助20
18秒前
爱狗先森发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
20秒前
20秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Handbook of Organizational Communication: An Interdisciplinary Perspective 400
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4558607
求助须知:如何正确求助?哪些是违规求助? 3985544
关于积分的说明 12339263
捐赠科研通 3656005
什么是DOI,文献DOI怎么找? 2014096
邀请新用户注册赠送积分活动 1048954
科研通“疑难数据库(出版商)”最低求助积分说明 937316