A hybrid hemodynamic knowledge-powered and feature reconstruction-guided scheme for breast cancer segmentation based on DCE-MRI

计算机科学 人工智能 分割 体素 模式识别(心理学) 特征(语言学) 杠杆(统计) 乳腺癌 乳房磁振造影 动态增强MRI 磁共振成像 计算机视觉 癌症 放射科 乳腺摄影术 医学 哲学 内科学 语言学
作者
Tianxu Lv,Youqing Wu,Yihang Wang,Yuan Liu,Lihua Li,Chu‐Xia Deng,Xiang Pan
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:82: 102572-102572 被引量:9
标识
DOI:10.1016/j.media.2022.102572
摘要

Automatically and accurately annotating tumor in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), which provides a noninvasive in vivo method to evaluate tumor vasculature architectures based on contrast accumulation and washout, is a crucial step in computer-aided breast cancer diagnosis and treatment. However, it remains challenging due to the varying sizes, shapes, appearances and densities of tumors caused by the high heterogeneity of breast cancer, and the high dimensionality and ill-posed artifacts of DCE-MRI. In this paper, we propose a hybrid hemodynamic knowledge-powered and feature reconstruction-guided scheme that integrates pharmacokinetics prior and feature refinement to generate sufficiently adequate features in DCE-MRI for breast cancer segmentation. The pharmacokinetics prior expressed by time intensity curve (TIC) is incorporated into the scheme through objective function called dynamic contrast-enhanced prior (DCP) loss. It contains contrast agent kinetic heterogeneity prior knowledge, which is important to optimize our model parameters. Besides, we design a spatial fusion module (SFM) embedded in the scheme to exploit intra-slices spatial structural correlations, and deploy a spatial-kinetic fusion module (SKFM) to effectively leverage the complementary information extracted from spatial-kinetic space. Furthermore, considering that low spatial resolution often leads to poor image quality in DCE-MRI, we integrate a reconstruction autoencoder into the scheme to refine feature maps in an unsupervised manner. We conduct extensive experiments to validate the proposed method and show that our approach can outperform recent state-of-the-art segmentation methods on breast cancer DCE-MRI dataset. Moreover, to explore the generalization for other segmentation tasks on dynamic imaging, we also extend the proposed method to brain segmentation in DSC-MRI sequence. Our source code will be released on https://github.com/AI-medical-diagnosis-team-of-JNU/DCEDuDoFNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
啾啾完成签到 ,获得积分10
2秒前
2微恙完成签到,获得积分10
3秒前
SciGPT应助zhizhiman采纳,获得10
3秒前
5秒前
完美世界应助碎落星沉采纳,获得10
5秒前
monicaaaa完成签到,获得积分10
7秒前
8秒前
大个应助清秀的飞风采纳,获得30
9秒前
9秒前
源孤律醒完成签到 ,获得积分10
11秒前
徐畅完成签到 ,获得积分10
12秒前
12秒前
wlscj应助科研通管家采纳,获得20
12秒前
zhonglv7应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
yiyitx应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
梁林林完成签到,获得积分10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
12秒前
852应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
13秒前
13秒前
zhonglv7应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
mengyuhuan完成签到,获得积分0
13秒前
领导范儿应助牛牛采纳,获得10
13秒前
yiyitx应助科研通管家采纳,获得20
13秒前
852应助科研通管家采纳,获得10
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
闪闪小帆完成签到,获得积分10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5296623
求助须知:如何正确求助?哪些是违规求助? 4445778
关于积分的说明 13837294
捐赠科研通 4330749
什么是DOI,文献DOI怎么找? 2377237
邀请新用户注册赠送积分活动 1372556
关于科研通互助平台的介绍 1337990