已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A hybrid hemodynamic knowledge-powered and feature reconstruction-guided scheme for breast cancer segmentation based on DCE-MRI

计算机科学 人工智能 分割 体素 模式识别(心理学) 特征(语言学) 杠杆(统计) 乳腺癌 乳房磁振造影 动态增强MRI 磁共振成像 计算机视觉 癌症 放射科 乳腺摄影术 医学 哲学 内科学 语言学
作者
Tianxu Lv,Youqing Wu,Yihang Wang,Yuan Liu,Lihua Li,Chu‐Xia Deng,Xiang Pan
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:82: 102572-102572 被引量:9
标识
DOI:10.1016/j.media.2022.102572
摘要

Automatically and accurately annotating tumor in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), which provides a noninvasive in vivo method to evaluate tumor vasculature architectures based on contrast accumulation and washout, is a crucial step in computer-aided breast cancer diagnosis and treatment. However, it remains challenging due to the varying sizes, shapes, appearances and densities of tumors caused by the high heterogeneity of breast cancer, and the high dimensionality and ill-posed artifacts of DCE-MRI. In this paper, we propose a hybrid hemodynamic knowledge-powered and feature reconstruction-guided scheme that integrates pharmacokinetics prior and feature refinement to generate sufficiently adequate features in DCE-MRI for breast cancer segmentation. The pharmacokinetics prior expressed by time intensity curve (TIC) is incorporated into the scheme through objective function called dynamic contrast-enhanced prior (DCP) loss. It contains contrast agent kinetic heterogeneity prior knowledge, which is important to optimize our model parameters. Besides, we design a spatial fusion module (SFM) embedded in the scheme to exploit intra-slices spatial structural correlations, and deploy a spatial-kinetic fusion module (SKFM) to effectively leverage the complementary information extracted from spatial-kinetic space. Furthermore, considering that low spatial resolution often leads to poor image quality in DCE-MRI, we integrate a reconstruction autoencoder into the scheme to refine feature maps in an unsupervised manner. We conduct extensive experiments to validate the proposed method and show that our approach can outperform recent state-of-the-art segmentation methods on breast cancer DCE-MRI dataset. Moreover, to explore the generalization for other segmentation tasks on dynamic imaging, we also extend the proposed method to brain segmentation in DSC-MRI sequence. Our source code will be released on https://github.com/AI-medical-diagnosis-team-of-JNU/DCEDuDoFNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wanci应助123采纳,获得10
5秒前
今后应助njq采纳,获得10
6秒前
6秒前
可爱的函函应助nnnd77采纳,获得10
8秒前
翠甜翠甜大西瓜完成签到 ,获得积分10
13秒前
不吃苹果和香蕉完成签到,获得积分10
15秒前
15秒前
Rn完成签到 ,获得积分10
17秒前
nnnd77完成签到,获得积分10
19秒前
20秒前
21秒前
Hello应助mochi采纳,获得30
22秒前
123发布了新的文献求助10
25秒前
27秒前
土豆你个西红柿完成签到 ,获得积分10
36秒前
ding应助zhangqi采纳,获得10
36秒前
36秒前
37秒前
雷博完成签到,获得积分10
39秒前
佛fire发布了新的文献求助10
42秒前
雷博发布了新的文献求助10
42秒前
xiao完成签到 ,获得积分10
43秒前
45秒前
mochi发布了新的文献求助30
48秒前
白桦林完成签到 ,获得积分20
54秒前
yaolei完成签到,获得积分10
56秒前
57秒前
eurhfe发布了新的文献求助10
1分钟前
丘比特应助bamboo采纳,获得10
1分钟前
悦耳的惜海完成签到,获得积分20
1分钟前
1分钟前
Artin完成签到,获得积分10
1分钟前
1分钟前
樱桃猴子完成签到,获得积分10
1分钟前
赵雪杰发布了新的文献求助10
1分钟前
1分钟前
多边棱发布了新的文献求助20
1分钟前
蛙蛙完成签到,获得积分10
1分钟前
bamboo发布了新的文献求助10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146673
求助须知:如何正确求助?哪些是违规求助? 2797981
关于积分的说明 7826310
捐赠科研通 2454478
什么是DOI,文献DOI怎么找? 1306289
科研通“疑难数据库(出版商)”最低求助积分说明 627692
版权声明 601522