Dynam-SLAM: An Accurate, Robust Stereo Visual-Inertial SLAM Method in Dynamic Environments

惯性测量装置 同时定位和映射 计算机科学 人工智能 稳健性(进化) 计算机视觉 水准点(测量) 机器人 移动机器人 大地测量学 生物化学 基因 化学 地理
作者
Hesheng Yin,Shaomiao Li,Yu Tao,J. Guo,Bo Huang
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:39 (1): 289-308 被引量:39
标识
DOI:10.1109/tro.2022.3199087
摘要

Most existing vision-based simultaneous localization and mapping (SLAM) systems and their variants still assume that the observation is absolutely static and cannot work well in dynamic environments. Here, we present the Dynam-SLAM (Dynam), a stereo visual-inertial SLAM system capable of robust, accurate, and continuous work in high dynamic environments. Our approach is devoted to loosely coupling the stereo scene flow with an inertial measurement unit (IMU) for dynamic feature detection and tightly coupling the dynamic and static features with the IMU measurements for nonlinear optimization. First, the scene flow uncertainty caused by measurement noise is modeled to derive the accurate motion likelihood of landmarks. Meanwhile, to cope with highly dynamic environments, we additionally construct the virtual landmarks based on the detected dynamic features. Then, we build a tightly coupled, nonlinear optimization-based SLAM system to estimate the camera state by fusing IMU measurements and feature observations. Finally, we evaluate the proposed dynamic feature detection module (DFM) and the overall SLAM system in various benchmark datasets. Experimental results show that the Dynam is almost unaffected by DFM and performs well in static EuRoC datasets. Dynam outperforms the current state-of-the-art visual and visual-inertial SLAM implementations in terms of accuracy and robustness in self-collected dynamic datasets. The average absolute trajectory error of Dynam in the dynamic benchmark datasets is $\sim$ 90% lower than that of VINS-Fusion, $\sim$ 84% lower than that of ORB-SLAM3, and $\sim$ 88% lower than that of Kimera.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZYC007完成签到,获得积分10
刚刚
吴鱼鱼鱼发布了新的文献求助20
刚刚
w_sea完成签到,获得积分10
1秒前
宁地啊发布了新的文献求助10
1秒前
乐乐应助星辉斑斓采纳,获得10
1秒前
yrll发布了新的文献求助10
2秒前
2秒前
2秒前
谦玉完成签到,获得积分10
3秒前
4秒前
5秒前
shuxian完成签到,获得积分10
5秒前
Akim应助胡图图采纳,获得10
6秒前
王淳完成签到 ,获得积分10
8秒前
CHEN发布了新的文献求助10
8秒前
qikkk完成签到,获得积分10
9秒前
9秒前
9秒前
小武wwwww完成签到 ,获得积分10
10秒前
mm发布了新的文献求助10
10秒前
野猪发布了新的文献求助30
10秒前
11秒前
12秒前
12秒前
Lucas应助典雅又夏采纳,获得10
13秒前
碧蓝醉蝶发布了新的文献求助10
14秒前
15秒前
杰尼乾乾发布了新的文献求助20
16秒前
余慵慵完成签到 ,获得积分10
16秒前
完美世界应助李双兔采纳,获得10
16秒前
tatami发布了新的文献求助10
17秒前
充电宝应助萧水白采纳,获得100
17秒前
18秒前
bkagyin应助chenling采纳,获得10
20秒前
22秒前
妙妙完成签到,获得积分10
25秒前
嗄巧完成签到,获得积分20
25秒前
26秒前
27秒前
CodeCraft应助蓝莓松饼采纳,获得10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967699
求助须知:如何正确求助?哪些是违规求助? 3512860
关于积分的说明 11165281
捐赠科研通 3247897
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804550