Dynam-SLAM: An Accurate, Robust Stereo Visual-Inertial SLAM Method in Dynamic Environments

惯性测量装置 同时定位和映射 计算机科学 人工智能 稳健性(进化) 计算机视觉 水准点(测量) 机器人 移动机器人 大地测量学 生物化学 基因 化学 地理
作者
Hesheng Yin,Shaomiao Li,Yu Tao,J. Guo,Bo Huang
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:39 (1): 289-308 被引量:39
标识
DOI:10.1109/tro.2022.3199087
摘要

Most existing vision-based simultaneous localization and mapping (SLAM) systems and their variants still assume that the observation is absolutely static and cannot work well in dynamic environments. Here, we present the Dynam-SLAM (Dynam), a stereo visual-inertial SLAM system capable of robust, accurate, and continuous work in high dynamic environments. Our approach is devoted to loosely coupling the stereo scene flow with an inertial measurement unit (IMU) for dynamic feature detection and tightly coupling the dynamic and static features with the IMU measurements for nonlinear optimization. First, the scene flow uncertainty caused by measurement noise is modeled to derive the accurate motion likelihood of landmarks. Meanwhile, to cope with highly dynamic environments, we additionally construct the virtual landmarks based on the detected dynamic features. Then, we build a tightly coupled, nonlinear optimization-based SLAM system to estimate the camera state by fusing IMU measurements and feature observations. Finally, we evaluate the proposed dynamic feature detection module (DFM) and the overall SLAM system in various benchmark datasets. Experimental results show that the Dynam is almost unaffected by DFM and performs well in static EuRoC datasets. Dynam outperforms the current state-of-the-art visual and visual-inertial SLAM implementations in terms of accuracy and robustness in self-collected dynamic datasets. The average absolute trajectory error of Dynam in the dynamic benchmark datasets is $\sim$ 90% lower than that of VINS-Fusion, $\sim$ 84% lower than that of ORB-SLAM3, and $\sim$ 88% lower than that of Kimera.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
费小曼发布了新的文献求助50
1秒前
nn应助晓雨采纳,获得10
1秒前
2秒前
2秒前
2秒前
搜集达人应助孤独的匕采纳,获得10
4秒前
4秒前
JamesPei应助春夏秋冬采纳,获得10
5秒前
墨海完成签到 ,获得积分10
5秒前
6秒前
6秒前
xuuuuu发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
爆米花应助cxh采纳,获得10
8秒前
8秒前
甘冽太白完成签到,获得积分10
9秒前
CipherSage应助高挑的洋葱采纳,获得10
9秒前
Hey发布了新的文献求助10
9秒前
云淡风轻发布了新的文献求助10
9秒前
隐形曼青应助科研狗采纳,获得10
10秒前
Akim应助轩辕峻熙采纳,获得10
10秒前
废柴发布了新的文献求助10
11秒前
yry发布了新的文献求助20
11秒前
12秒前
orixero应助甜甜圈采纳,获得10
12秒前
12秒前
妮妮你发布了新的文献求助10
12秒前
叶祥发布了新的文献求助10
12秒前
13秒前
13秒前
lying完成签到,获得积分10
15秒前
16秒前
16秒前
叶祥完成签到,获得积分10
17秒前
17秒前
zry完成签到,获得积分10
17秒前
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148993
求助须知:如何正确求助?哪些是违规求助? 2800076
关于积分的说明 7838336
捐赠科研通 2457543
什么是DOI,文献DOI怎么找? 1307913
科研通“疑难数据库(出版商)”最低求助积分说明 628328
版权声明 601685