Combination of Hematoma Volume and Perihematoma Radiomics Analysis on Baseline CT Scan Predicts the Growth of Perihematomal Edema

医学 列线图 接收机工作特性 逻辑回归 无线电技术 队列 放射科 核医学 内科学
作者
Jia Wang,Xing Xiong,Jinzhao Zou,Jianxiong Fu,Yi-Li Yin,Jing Ye
出处
期刊:Clinical neuroradiology [Springer Science+Business Media]
卷期号:33 (1): 199-209 被引量:4
标识
DOI:10.1007/s00062-022-01201-x
摘要

PurposeThe aim is to explore the potential value of CT-based radiomics in predicting perihematomal edema (PHE) volumes after acute intracerebral hemorrhage (ICH) from admission to 24 h.MethodsA total of 231 patients newly diagnosed with acute ICH at two institutes were analyzed retrospectively. The patients were randomly divided into training (N = 117) and internal validation cohort (N = 45) from institute 1 with a ratio of 7:3. According to radiomics features extracted from baseline CT, the radiomics signatures were constructed. Multiple logistic regression analysis was used for clinical radiological factors and then the nomogram model was generated to predict the extent of PHE according to the optimal radiomics signature and the clinical radiological factors. The receiver operating characteristic (ROC) curve was used to evaluate the discrimination performance. The calibration curve and Hosmer-Lemeshow test were used to evaluate the consistency between the predicted and actual probability. The support vector regression (SVR) model was constructed to predict the overall value of follow-up PHE. The performance of the models was evaluated on the internal and independent validation cohorts.ResultsThe perihematoma 5 mm radiomics signature (AUC: 0.875) showed good ability to discriminate the small relative PHE(rPHE) from large rPHE volumes, comparing to intrahematoma radiomics signature (AUC: 0.711) or perihematoma 10 mm radiomics signature (AUC: 0.692) on the training cohort. The AUC of the combined nomogram model was 0.922 for the training cohort, 0.945 and 0.902 for the internal and independent validation cohorts, respectively. The calibration curves and Hosmer–Lemeshow test of the nomogram model suggested that the predictive performance and actual outcome were in favorable agreement. The SVR model also predicted the overall value of follow-up rPHE (root mean squared error, 0.60 and 0.45; Pearson correlation coefficient, 0.73 and 0.68; P < 0.001).ConclusionAmong patients with acute ICH, the established nomogram and SVR model with favorable performance can offer a noninvasive tool for the prediction of PHE after ICH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxzb完成签到,获得积分10
2秒前
居里姐姐完成签到 ,获得积分0
3秒前
mengmenglv完成签到 ,获得积分0
3秒前
迈克老狼发布了新的文献求助10
9秒前
123完成签到,获得积分10
10秒前
吕嫣娆完成签到 ,获得积分10
11秒前
争气完成签到 ,获得积分10
12秒前
平淡寄瑶完成签到,获得积分20
12秒前
柚C美式完成签到 ,获得积分10
14秒前
kysl完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
17秒前
鹏826完成签到 ,获得积分0
17秒前
JW流年完成签到 ,获得积分10
17秒前
冠心没有病完成签到,获得积分10
18秒前
wxnice完成签到,获得积分10
18秒前
搬砖完成签到 ,获得积分10
21秒前
PPSlu完成签到,获得积分10
21秒前
George完成签到,获得积分10
23秒前
漏脑之鱼完成签到 ,获得积分10
27秒前
风信子deon01完成签到,获得积分10
30秒前
今天进步了吗完成签到,获得积分10
31秒前
猫猫头完成签到 ,获得积分10
37秒前
chrysan完成签到,获得积分10
38秒前
nano完成签到 ,获得积分10
38秒前
jason完成签到 ,获得积分10
41秒前
为你等候完成签到,获得积分10
43秒前
三脸茫然完成签到 ,获得积分10
46秒前
alan完成签到 ,获得积分10
47秒前
luoqin完成签到 ,获得积分10
48秒前
看文献完成签到,获得积分0
51秒前
多喝水完成签到 ,获得积分10
53秒前
爱静静应助科研通管家采纳,获得30
57秒前
慕青应助科研通管家采纳,获得20
57秒前
充电宝应助科研通管家采纳,获得10
57秒前
oo完成签到 ,获得积分10
57秒前
量子星尘发布了新的文献求助30
58秒前
落后的怀梦完成签到 ,获得积分10
59秒前
1分钟前
欢呼的丁真完成签到,获得积分10
1分钟前
hhh完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015640
求助须知:如何正确求助?哪些是违规求助? 3555625
关于积分的说明 11318138
捐赠科研通 3288796
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015