医学
列线图
接收机工作特性
逻辑回归
无线电技术
队列
放射科
核医学
内科学
作者
Jia Wang,Xing Xiong,Jinzhao Zou,Jianxiong Fu,Yili Yin,Jing Ye
标识
DOI:10.1007/s00062-022-01201-x
摘要
PurposeThe aim is to explore the potential value of CT-based radiomics in predicting perihematomal edema (PHE) volumes after acute intracerebral hemorrhage (ICH) from admission to 24 h.MethodsA total of 231 patients newly diagnosed with acute ICH at two institutes were analyzed retrospectively. The patients were randomly divided into training (N = 117) and internal validation cohort (N = 45) from institute 1 with a ratio of 7:3. According to radiomics features extracted from baseline CT, the radiomics signatures were constructed. Multiple logistic regression analysis was used for clinical radiological factors and then the nomogram model was generated to predict the extent of PHE according to the optimal radiomics signature and the clinical radiological factors. The receiver operating characteristic (ROC) curve was used to evaluate the discrimination performance. The calibration curve and Hosmer-Lemeshow test were used to evaluate the consistency between the predicted and actual probability. The support vector regression (SVR) model was constructed to predict the overall value of follow-up PHE. The performance of the models was evaluated on the internal and independent validation cohorts.ResultsThe perihematoma 5 mm radiomics signature (AUC: 0.875) showed good ability to discriminate the small relative PHE(rPHE) from large rPHE volumes, comparing to intrahematoma radiomics signature (AUC: 0.711) or perihematoma 10 mm radiomics signature (AUC: 0.692) on the training cohort. The AUC of the combined nomogram model was 0.922 for the training cohort, 0.945 and 0.902 for the internal and independent validation cohorts, respectively. The calibration curves and Hosmer–Lemeshow test of the nomogram model suggested that the predictive performance and actual outcome were in favorable agreement. The SVR model also predicted the overall value of follow-up rPHE (root mean squared error, 0.60 and 0.45; Pearson correlation coefficient, 0.73 and 0.68; P < 0.001).ConclusionAmong patients with acute ICH, the established nomogram and SVR model with favorable performance can offer a noninvasive tool for the prediction of PHE after ICH.
科研通智能强力驱动
Strongly Powered by AbleSci AI