Integrating large language models in systematic reviews: a framework and case study using ROBINS-I for risk of bias assessment

系统回顾 计算机科学 心理学 管理科学 风险分析(工程) 梅德林 医学 工程类 政治学 法学
作者
Bashar Hasan,Samer Saadi,Noora S. Rajjoub,Moustafa Hegazi,Mohammad Al-Kordi,Farah Fleti,Magdoleen H. Farah,Irbaz Bin Riaz,Imon Banerjee,Zhen Wang,M. Hassan Murad
出处
期刊:BMJ evidence-based medicine [BMJ]
卷期号:: bmjebm-112597 被引量:7
标识
DOI:10.1136/bmjebm-2023-112597
摘要

Large language models (LLMs) may facilitate and expedite systematic reviews, although the approach to integrate LLMs in the review process is unclear. This study evaluates GPT-4 agreement with human reviewers in assessing the risk of bias using the Risk Of Bias In Non-randomised Studies of Interventions (ROBINS-I) tool and proposes a framework for integrating LLMs into systematic reviews. The case study demonstrated that raw per cent agreement was the highest for the ROBINS-I domain of 'Classification of Intervention'. Kendall agreement coefficient was highest for the domains of 'Participant Selection', 'Missing Data' and 'Measurement of Outcomes', suggesting moderate agreement in these domains. Raw agreement about the overall risk of bias across domains was 61% (Kendall coefficient=0.35). The proposed framework for integrating LLMs into systematic reviews consists of four domains: rationale for LLM use, protocol (task definition, model selection, prompt engineering, data entry methods, human role and success metrics), execution (iterative revisions to the protocol) and reporting. We identify five basic task types relevant to systematic reviews: selection, extraction, judgement, analysis and narration. Considering the agreement level with a human reviewer in the case study, pairing artificial intelligence with an independent human reviewer remains required.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
行之发布了新的文献求助10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
Wanfeng应助科研通管家采纳,获得200
1秒前
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
2秒前
凡凡发布了新的文献求助10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
8R60d8应助科研通管家采纳,获得10
2秒前
FashionBoy应助Yimi采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
顾矜应助科研通管家采纳,获得30
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
大个应助forever采纳,获得10
4秒前
Puan发布了新的文献求助10
4秒前
上官若男应助zhishikaimen采纳,获得10
5秒前
天天快乐应助孙周采纳,获得10
5秒前
天天快乐应助含糊的文涛采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
看不懂发布了新的文献求助10
6秒前
共享精神应助JiaYY采纳,获得10
8秒前
轻松的冥王星完成签到,获得积分10
8秒前
陈哥发布了新的文献求助10
8秒前
凡凡完成签到,获得积分10
8秒前
隐形曼青应助吕健采纳,获得10
8秒前
9秒前
9秒前
xiaohua发布了新的文献求助50
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675445
求助须知:如何正确求助?哪些是违规求助? 4946851
关于积分的说明 15153495
捐赠科研通 4834824
什么是DOI,文献DOI怎么找? 2589661
邀请新用户注册赠送积分活动 1543377
关于科研通互助平台的介绍 1501192