析氧
催化作用
电催化剂
纳米颗粒
材料科学
原位
化学工程
氧气
纳米技术
化学
电化学
电极
物理化学
有机化学
工程类
作者
Xiang Li,Mengna Wang,Jie Fu,Fang Lü,Zhenyu Li,Guoxiong Wang
出处
期刊:Small
[Wiley]
日期:2023-12-27
卷期号:20 (23)
被引量:1
标识
DOI:10.1002/smll.202310040
摘要
Abstract Constructing composite catalysts with refined geometric control and optimal electronic structure provides a promising route to enhance electrocatalytic performance toward the oxygen evolution reaction (OER). Herein, a composite catalyst is prepared with multiple components using chemical vapour deposition method to transform crystalline NiFe 2 O 4 into crystalline NiFe 2 O 4 @amorphous S‐NiFe 2 O 4 with core‐shell structure (C‐NiFe 2 O 4 @A‐S‐NiFe 2 O 4 ), and Fe‐NiOOH nanoparticles are subsequently in situ generated on its surface during the process of electrocatalytic OER. The C‐NiFe 2 O 4 @A‐S‐NiFe 2 O 4 catalyst exhibits a low overpotential of 275 mV while possessing an excellent stability for 500 h at 10 mA cm −2 . The anion exchange membrane water electrolyzer with C‐NiFe 2 O 4 @A‐S‐NiFe 2 O 4 anode catalyst obtains a current density of 4270 mA cm − 2 at 2.0 V. Further, in situ Raman spectroscopy result demonstrates that in situ generated Fe‐NiOOH nanoparticles are revealed to act as the catalytic active phase for catalyzing the OER. Besides, introducing A‐S‐NiFe 2 O 4 in C‐NiFe 2 O 4 @A‐S‐NiFe 2 O 4 facilitates the formation of Fe‐NiOOH nanoparticles with high‐valency Ni, thus increasing the proportion of lattice oxygen‐participated OER. This work not only provides an alternative strategy for the design of high‐performance catalysts, but also lays a foundation for the exploration of catalytic mechanisms.
科研通智能强力驱动
Strongly Powered by AbleSci AI